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ABSTRACT 

Operations research analysts often use a hierarchy of combat models to provide 

insight to military decision makers. Briefly, lower-level, higher-resolution models 

provide input to higher-level, lower-resolution models. This allows analysts to explore 

how engineering and tactics changes can affect campaign effectiveness. This thesis builds 

upon previous research and examines various methods for employing distributions of 

engagement-level model outputs as input to campaign-level models, instead of just using 

the average. We contrast methods for “linking” the engagement-level model to the 

campaign-level model. Previous research indicates that when expected values alone are 

propagated through layers of combat models, the final results will likely be biased, and 

risk underestimated. 

An air-to-air engagement model is developed to generate a data library that is 

used as input in a stochastic Lanchester campaign model. A variety of sampling methods 

are employed to sample from the engagement model’s output data library to provide 

input to the campaign model. The results indicate that the manner in which the 

engagement and campaign models are linked has substantial impact on the estimates of 

operational effectiveness and risk. Additionally, our research illustrates how running a 

designed experiment on the engagement-level model, to generate a library of data that 

can be linked to the campaign-level model, can support robust decision making. 
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THESIS DISCLAIMER 

The reader is cautioned that the computer programs presented in this research may 

not have been exercised for all cases of interest. While every effort has been made, within 

the time available, to ensure that the programs are free of computational and logical 

errors, they cannot be considered validated. Any application of these programs without 

additional verification is at the risk of the user. 
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EXECUTIVE SUMMARY 

Combat simulations are widely used to simulate tactical to campaign operations to 

provide insight to decision makers. These simulations vary in the amount of detail they 

contain, and are sometimes referred to as “lower level and higher resolution” or “higher 

level and less resolution.”  The higher the level, the less the detail, but the greater and 

more aggregated the span of simulated operations. All combat models require input data, 

sometimes estimated from the result of live tests or exercises, or, as we discuss, 

sometimes from the output of lower-level combat simulations. The process of utilizing 

lower-level model outputs as input to a higher-level model is referred to as a hierarchy of 

models. This hierarchy allows the analyst to explore how engineering and tactics changes 

can affect campaign effectiveness. Operations research analysts of many countries utilize 

this hierarchy of simulations to provide insight to their leadership. Instead of conducting 

real world exercises to decide which platforms to procure, hierarchical simulation is a 

useful tool to explore engineering effects on missions and campaigns since there is no 

potential for loss of money and lives. By using hierarchal simulation, the Turkish Air 

Force can gain insight into questions such as “how will better sensors or weapons affect 

the outcome of a series of air battles?” Senior leadership can then use this information to 

determine the best investments to achieve and sustain warfare dominance within a 

particular budget. 

This thesis builds upon previous error propagation research conducted by U.S. 

Navy LT Russell Pav (2015) and examines various methods for employing distributions 

of engagement model outputs as inputs to campaign models, instead of just using the 

average. We contrast methods for “linking” the engagement-level model to the campaign 

model. Previous research indicates that when expected values alone are propagated 

through layers of combat models, the final results will likely be biased, and risk 

underestimated. 

For this thesis, we first develop an engagement-level model for a two-versus-two 

air engagement between jet fighters in the stochastic, agent-based Map Aware Non-

uniform Automata (MANA) simulation environment (McIntosh, 2009). The measures of 



 xx 

performance (MOPs) for this model are based on open source operating characteristics of 

jet fighters—such as speed, range, and weapon probabilities of kill. These are inputs to 

the MANA simulation. The measures of effectiveness (MOEs) are losses, time of battle, 

and probability each side wins; these are the outputs from the engagement-level model. 

Variability in the MOPs is induced and explored using two different designs of 

experiments (DOEs), the Nearly Orthogonal Latin Hypercube (NOLH) and the 

Resolution V Fractional Factorial (R5FF), and we examine how the choice of 

experimental design impacts results.  The MANA runs yield a library of outputs that can 

be accessed as needed by the campaign model. 

Next, we construct a stochastic Lanchester Linear Law campaign model.  Each 

campaign simulates four discrete engagements of 25 versus 25 jet fighters, and each 

engagement utilizes a breakpoint such that the engagement is terminated as soon as one 

side is depleted to a quarter of their original strength.  The attrition coefficients for the 

stochastic Lanchester campaign model are determined by the losses and time of battle 

obtained from the engagement-level MANA model.  Because MANA is stochastic, many 

replications are run, producing a distribution of outcomes.   However, the campaign-level 

model takes scalars as input. Thus, the research question is how best can we link these 

two models to account for the variability?  Several methods for using the engagement-

level results as inputs to the campaign-level simulation are assessed and compared in this 

thesis. 

This research aims to answer following research questions: 

• What are the results of using different methods (e.g., taking the mean, 
random sampling, metamodeling, etc.) to convert outputs from a lower-
level air combat model to inputs to a campaign-level model? 

• Is using a lower-level model’s output as input to a higher-level model a 
reasonable approach for air combat models? 

• Does use of the design generated from NOLH and R5FF methods cause a 
significant change in outputs? 

Analysis indicates that the sampling methodology and the manner in which the 

engagement and campaign models are linked have a significant impact on the estimate of 

operational effectiveness and risk. Beyond conducting random sampling on a different 



 xxi 

scenario than the one Pav used, this study employed additional techniques to sample from 

or link to the lower-level engagement model. In particular, we explored and compared the 

embedded metamodeling and linked metamodeling approaches, and established a key 

difference between the two; namely that the deterministic embedded metamodeling 

technique can lead to biased results and underestimation of risk. For example, Figure 1 

illustrates the difference between the deterministic embedded metamodeling approach 

and the linked metamodel approach, for a simple one-variable experiment. The blue dots 

connected by the smoother line represent the result of evaluating a deterministic 

composite formula for P(Win) that is a function of system-level variables at multiple 

design points. The formulas were developed by finding a regression response at each 

modeling level. Since this example only varied one of the factors (variables), the other 

variables were fixed at their baseline levels. The red dots with the standard deviation 

error bars represent variability in the estimate for P(Win) with the models directly linked. 

That is, a sample of engagement-level outputs, across many design points, was run in 

multiple replications of the stochastic Lanchester campaign model. The results show that 

the deterministic embedded metamodel would usually result in overestimating P(Win) 

and underestimating risk. 



 xxii 

 
 

Figure 1. Comparison of Deterministic Embedded Metamodel results (blue) to 
Linked Metamodel results (red) 

 

Lastly, we emphasize that an excellent method for systematically exploring 

uncertainties in the scenario is design of experiments; and the resulting output is capable 

of adequately characterizing variability and risk. In our experimentation, we used both 

the Nearly Orthogonal Latin Hypercube (NOLH) and the Resolution 5 Fractional 

Factorial (R5FF) designs. If time permits, it would be desirable to supplement the 

desirable features of the space-filling NOLH with the corner-sampling R5FF. In Chapter 

IV, we demonstrated how the campaign model linked to DOE output is much more 

effective and useful for quantifying risk than the use of the deterministic embedded 

metamodel approach. This is because the designed experiment captures the variability 

that results when engineering factors, many of which we may be uncertain about or do 

not have control over, are varied over reasonable ranges.  
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I. INTRODUCTION 

“Peace at home, peace in the world.” 

—Mustafa Kemal Ataturk 

 

Models are an essential element in planning and resourcing for air combat. A 

model, whether in the form of a diagram, a set of differential equations, or a computer 

simulation, permits us to generate information as to possible outcomes before we engage 

resources. Because we have come to depend on models to provide insight and generate 

solutions, the data used in computer simulated air combat modeling must be as precise as 

possible. As a method used in air combat modeling, hierarchal combat modeling is 

widely used to estimate the effects of engineering changes on the outcomes of a 

campaign. To do that, high-resolution low-level models provide inputs to low-resolution 

higher-level models. During this process, stochastic low-level models produce outputs 

with probability distributions, and, if the variance of this distribution is not taken into 

account, when the data is applied to higher-level models, small errors can become much 

larger errors. This phenomenon is known as error propagation within hierarchal combat 

models. Error propagation can cause uncertainty regarding the outcomes of a campaign, 

which is a risk that decision-makers should assess carefully (Pav, 2015).  

In this chapter, we first define combat modeling and give reasons for the use of 

combat modeling. In the literature review section, we discuss air combat modeling as it 

pertains to this study. Then, we review hierarchal modeling applications in both combat 

modeling and other scientific areas. We also discuss different model levels associated 

with hierarchal modeling and error propagation/assessment. Finally, research questions 

and the scope of the thesis are presented, including our objectives and methodology. 

A. BACKGROUND: DEFINITION AND NEED FOR COMBAT MODELING 

Today’s military operations are complex and often risk both money and human 

lives. Thus, understanding combat is critical. Towards that end, analysts around the world 
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use combat modeling as a tool to discover solutions for real life problems. In their book, 

Combat Modeling, Alan Washburn and Moshe Kress define a model as “A model is an 

abstraction of reality” (Washburn & Kress, 2009, p. 1). They go on to explain that “Our 

limited intellects permit us to deal only with abstractions that retain the essence of the 

matter without the distracting details. As a great tool, models are used for reasoning, 

insight, planning, and prediction. They need to capture the key factors of the object or 

situation and faithfully represent them so that the models can be utilized effectively” 

(Washburn & Kress, 2009, p. 1). Having the goal of solving real problems, these models 

can be a set of differential equations or a diagram or a computer simulation model. In 

order to effectively use this tool, operations research analysts strive to solve real life 

problems by generating models that include relevant details of these problems. The utility 

of these models is that they permit us to investigate situations without the risk of losing 

money and lives. 

An important early combat model was developed by Frederick W. Lanchester 

during his studies on attrition during World War I. Lanchester, an engineer and a car 

company owner in London, was interested in aerial battles and developed differential 

equations to predict the outcome of battles (Lanchester, 1916). Since then,  many combat 

models have been generated and used for similar purposes. In practice, most combat 

models are a description or representation of weapon systems and combat operations 

implemented in a computer program. Combat models are a crucial tool in the analysis of 

military operations, tactics, and strategies.  

Testing a weapon system by employing combat modeling simulations is 

significantly less expensive than experiments using real weapon systems: “Combat 

models provide information that assists decision-makers in making and justifying 

decisions that involve the expenditure of billions of dollars and impact many lives” 

(Thomas W. Lucas, Turker Turkes, 2004, p. 1). For instance, the Turkish Air Force’s 

capabilities are mostly based on Lockheed Martin’s F-16C and F-16D multirole fighter 

aircraft (IHS Jane’s, 2016). The unit cost of a single F-16C aircraft is $18.8 million 

(fiscal 1998 constant dollars) (U.S. AIR FORCE, 2015). Moreover, Turkish F-16Cs carry 

AIM-9S/X Sidewinder (Air Intercept Missile) and AIM-120C AMRAAM (Advanced 
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Medium Range Air-to-Air Missile) missiles for air-to-air operations. The cost of a single 

AIM-120C AMRAAM missile is about $1.2 million and the cost of a single AIM-9S/X 

Sidewinder missile is about $600,000 (IHS Jane’s, 2016). In order to evaluate the tactical 

effectiveness of these missile systems in combat, performing a real exercise would be 

very costly and limited in scale. Instead of live exercises, using high-resolution combat 

models provides helpful insights about the tactical effectiveness of these aircraft and 

missile systems. Moreover, combat modeling can be used when the systems do not 

actually exist. That is, they can be used to help guide investment decisions in developing 

future systems. 

In addition, combat modeling does not require actual military assets and personal. 

Hence, there is no loss of military assets or casualties when running a computer-based 

combat simulation. Since all scenarios are executed on the computer, there is no need to 

have an actual enemy force to fight against  

While combat models are useful in providing insight about military issues or 

weapon systems, they do not provide precise and actual outcomes of a real campaign. 

Therefore, analysts should be careful when building and using combat models, 

determining the inputs, and analyzing the outputs of the model. These fundamental steps 

of modeling must be studied carefully; otherwise, outcomes of a combat model may lead 

decision-makers to wrong choices—which may cause the loss of many lives. 

As one of the methods of combat modeling, hierarchal combat modeling is used 

by today’s military forces in many countries to investigate the effects of engineering level 

changes on the outcomes of a campaign, to analyze alternative force structures, and to 

learn about which weapons and weapon platforms are crucial to develop and procure. In 

the following literature review section, previous studies and more detailed information 

about hierarchal combat modeling is presented. 

B. LITERATURE REVIEW 

This section contains a literature review and explains air combat modeling and 

hierarchal combat modeling in the context of this research. 
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1. Air Combat Modeling 

As a branch of today’s warfare, air combat contains many interacting systems that 

are operated by both human and command/control (C2) operators. To assess the 

effectiveness of aerial systems, “Computer-based air combat modeling is a powerful tool, 

widely accepted for its usefulness. The extremely high cost of operating aircraft and their 

weapons has led to a rapid growth in the development and use of computer simulation 

models as a basis for tactics development, pilot training, and operational evaluation of 

weapon systems” (Rao, Lucas, Morley, Selvestrel, & Murray, 1993). Additionally, 

procuring, operating, and maintaining multi-integrated air combat systems are very 

expensive compared to the cost of many army vehicles and weapon platforms. For 

instance, a German leopard tank’s cost is $6,790,000, whereas a F-35A multi-role fighter 

aircraft is $90,000,000 (IHS Jane’s, 2016). To reduce cost, simulation modeling provides 

an opportunity for investigating the effects of technological progress on the effectiveness 

of current and potential aerial systems. Briefly, air combat modeling is a specified field of 

combat modeling where air-to-air or air-to-ground operations are modeled. 

Reaping the benefits of air combat modeling often requires time-consuming and 

complex analysis since these models require specific inputs matching the capabilities and 

tactics in air operations. Interactions between new aerial systems and current tactics must 

be analyzed carefully before decision makers determine whether or not to procure a new 

aerial platform or weapon system. Consequently, employing air combat modeling saves a 

lot of money; however, a substantial investment in time and effort is necessary for 

credible analysis. 

 From the beginnings of combat modeling as a campaign analysis tool, there have 

been many research studies that modeled air combat. As the author mentioned before, 

Frederick W. Lanchester’s effort is one of the oldest air combat modeling studies. 

Lanchester published a book entitled Aircraft in Warfare: the Dawn of the Fourth Arm in 

1916 and shared his ideas about aerial warfare (Lanchester, 1916). In the book, 

Lanchester described a family of differential equations that modeled how two military 

forces would attrite each other in combat. Lanchester developed two different models; he 
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believed that “square law,” one of the models, would describe “modern” air combat. 

These equations are described in the second chapter of this study. 

There have been many studies on the validity of various forms of Lanchester’s 

laws over the years; for example, see Engel (1954), Hartley (2001), and Lucas and 

Dinges (2004). As a whole, these researchers find that no consistent Lanchester law 

dominates, but a combination of Lanchester linear and log laws fit best. Recently, three 

academicians at the University of York, Ian Horwood (Historian), Niall MacKay 

(Mathematical Physicist), and Christopher Price (Historian) analyzed historical data of 

various air campaigns (Battle of Britain, 1940; Pacific Air War, 1941–1945; Korean War, 

1950–1953) and found results opposed to what Lanchester believed. Their starting 

hypothesis was that air combat is a set of duels, best modeled as random with the 

Lanchester linear law. They postulated that air combat does not obey a square law, based 

on their analysis of historical air combat data. They concluded that air combat is 80% 

linear-law and 20% asymmetric (Horwood, Mackay, & Price, 2014). As a result of their 

conclusion, this study employs a linear law in the campaign-level model instead of the 

more traditional square law.  

After Lanchester’s studies, many air combat modeling equations, tools, and 

simulation programs have been developed based on derivatives and extensions of 

Lanchester’s original two laws. The U.S. Air Force is currently using many different 

simulation programs in campaign analysis, depending on the size of the campaign or the 

operation that they are interested in and study objectives. BRAWLER is one of these 

simulation programs. In the website of  Defense Systems Information Analysis Center of 

U.S. DOD (https://www.dsiac.org), BRAWLER is described:  

… simulates air-to-air combat between multiple flights of aircraft in both 
the visual and beyond-visual-range (BVR) arenas. … This simulation of 
flight-vs.-flight air combat is considered to render realistic behaviors for 
military trained fighter pilots. BRAWLER incorporates value-driven and 
information-oriented principles in its structure to provide a Monte Carlo, 
event-driven simulation of air combat between multiple flights of aircraft 
with real-world stochastic features. The user decides the pilot’s decision 
process, including doctrine, mission-specific objectives, and tactics; level 
or training and experience; and perceived capability of the enemy. 
(Brawler, 2015)  
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In Figure 1, a visualization of an air-to-air combat model in BRAWLER is shown. 

 
Figure 1.  Air-to-Air Combat Model in BRAWLER. Source: Brawler 

(2015) 

Another simulation program that is currently used by the U.S. Navy, U.S. Air 

Force, and Turkish Air Force is the Synthetic Theater Operations Research Model 

(STORM). STORM “is the primary campaign analysis tool used by the Office of the 

Chief of Naval Operations, Assessment Division (OPNAV N81) and other Department of 

Defense organizations to aid in providing analysis to top-level officials on force 

structures, operational concepts, and military capabilities” (Seymour, 2014, p. v).  

In many OPNAV N81 studies, the stochastic, mission-level model BRAWLER is 

run to generate input for the stochastic, campaign-level simulation STORM. In this 

thesis, we employ a simpler pair of engagement-level and campaign-level models of air-

to-air combat to investigate error propagation within hierarchal air combat models.  
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2. Hierarchical Modeling Approach 

As a type of simulation modeling, hierarchal modeling has been used in many 

scientific studies in different science fields, such as environmental science, social science, 

and military science, etc. For instance, hierarchal modeling has been widely used in 

epidemic disease analysis, where the model can map the possible direction and the 

number of people potentially affected by the disease (A. B. Lawson, 2013). The methods 

and analysis utilized in these studies can be different, but the basic idea is similar. Lower-

level models provide inputs for upper-level or aggregate models. Christopher K. Wikle 

described the need for hierarchal modeling in environmental science in one of his studies: 

Hierarchal Models in Environmental Science. He stated that environmental systems 

include spatial-temporal processes and they are interacting with different scales since 

they are very complicated. The processes such as monitoring networks, computer models, 

remote sensing platforms, and geographical information systems generate a large amount 

of data (Wikle, 2003). Wikle mentioned that it is not enough to evaluate such processes 

with a joint perspective. Therefore, there is an indispensable need of hierarchal modeling 

to provide a coherently connected system of conditional circumstantial models and return 

reasonable outcomes for given processes. 

Another important usage of hierarchal modeling has been with military 

simulations. In the military simulation world, operations research analysts of many 

countries explore the effects of engineering-level changes on campaign output by 

employing hierarchal combat modeling. Involving the detailed and sophisticated features 

of weapon platforms, high-resolution lower-level models, such as those of one-on-one 

combat, are readily simulated with current simulation software programs. Then, 

campaign-level models use the output of these higher-resolution models as input. 

Simulating campaign-level combat is a very complex and time-consuming study, and 

must be done at a less detailed (i.e., more aggregated) level of resolution. It is important 

to address both the detailed aspects of combat represented in high-resolution models 

(such as engagement-level and mission-level models) and the broader context of 

campaigns. 
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In order to conduct a useful and reasonable campaign analysis, objectives, tasks, 

and metrics of the campaign must be well defined. Essential details of the mission should 

be taken into consideration, analyzed, and included as an assumption in the campaign 

analysis process. Therefore, many countries are using hierarchal families of combat 

models in their studies. Typically, they employ campaign-level models that are fed by the 

outputs of mission-level models, which in turn are fed by the inputs of even more detailed 

models. This hierarchy among simulations is often displayed as a pyramid. The 

foundation of the pyramid consists of many highly-detailed and narrowly focused 

physics-based models. The top of the pyramid typically consists of a single highly-

aggregated campaign-level model. A version of this pyramid that OPNAV N81 uses is 

shown in Figure 2. 
 

 
Figure 2.  Hierarchy Pyramid of Simulation Models. A Similar Version is 

Used by OPNAV N81 
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As an example of hierarchal combat modeling, one of outputs of one-on-one 

aircraft engagements, such as a missile’s probability of kill, are generally used as input 

for a mission-level model. The output of this mission-level model (say an exchange ratio) 

may then be used as an input to a campaign-level simulation. 

By utilizing hierarchal combat modeling, decision makers can observe the effects 

of changes in weapon platforms on tactical performance and campaign effectiveness. As 

well as many other countries, the U.S. Air Force and U.S. Navy are using hierarchal 

combat modeling to determine the force structure required to meet future military needs. 

The U.S. Air Force Analysis Panel’s presentation slides on an analytic framework and 

analytic agenda show (see Figure 3) a similar hierarchal pyramid of simulation models 

(Cerniglia-Mosher, 2009). 

 
Figure 3.  Hierarchical Combat Modeling Pyramid. Source: Cerniglia-

Mosher (2009) 

All of this begs the question: why not put all of the detail into one campaign-level 

model? Simply put, it is infeasible given time and processing constraints to run a high-

resolution campaign-level simulation over the necessary replications to generate the 

required output. Moreover, the complexity of doing so is staggering (Lucas and 

McGunnigle 2003). At this point, hierarchal combat modeling allows analysts to link 

low-level details to campaign-level outcomes—and saves a lot of time and money, in 
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comparison to conducting live exercises. This process enables the objectives, tasks, and 

metrics of the campaign to be analyzed and included in each model level. The 

fundamental levels of hierarchal modeling are discussed in the following paragraphs of 

this thesis. 

a. Engagement /Engineering Level Models 

Operations research analysts study the quantitative characteristics of military 

assets, such as probability of hit, radar range, missile range, etc. In order to determine 

how effectively military assets perform in tasks and missions, these characteristic 

quantities are captured using the output of highly-detailed engineering-level simulations 

(T.W. Lucas, personal communication, September 9, 2015). These kinds of models are 

known as entity, engineering, or engagement-level models. 

Additionally, these models are useful since the physical testing of military 

equipment is very costly. As it was mentioned before, conducting a military exercise with 

a loaded aircraft can cost millions of dollars. These high costs prevent armed forces from 

conducting more than a handful of live fire exercises and tests to evaluate their 

effectiveness. Before proceeding to the next step (i.e., building prototypes of military 

assets, missiles, and conducting live tests) engineering-level models may provide 

information to ensure that the design is reliable and plausible. Such an approach can save 

millions of dollars. 

b. Mission-Level Models 

Any kind of military operation involves small- or large-scale missions. For each 

mission type, several tactics can be developed and used in these operations. Before 

applying these tactics in related operations, they should be examined to see how effective 

and plausible they are. Therefore, live-fire exercises are an option for armed forces to test 

their tactics. However, conducting live-fire exercises to test these tactics is very 

expensive and may end up with the loss of costly equipment and lives. As a result, 

mission-level combat simulations are often used to evaluate the effectiveness of specific 

military assets and tactics in achieving mission objectives. The results of mission-level 

simulations are used by armed forces to develop tactical doctrine and to assist military 
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personnel in learning how to use military platforms, such as aircraft, helicopters, and 

missiles. Lucas stated in his lecture notes that mission-level models are commonly used 

to study doctrine, plan missions, assess force employment options, and evaluate force 

modernization choices (T.W. Lucas, personal communication, September 9, 2015). 

c. Campaign-Level Models 

Campaign-level models are useful not only in simulating campaigns and 

operations, but also in shaping future force structures. In the military world, experience 

has shown that the acquisition of a major weapon platform regularly takes more than 

decade. For example, Turkey signed a contract to procure 100 F-35A single-engine, 

single-seat, stealth multirole fighters for $175M each on 11 June 2002 (United States 

Government Accountability Office, 2004). After many years, Turkey was able to order 

six of these fighters, which are assured to be delivered by 2018. The rest of the aircraft 

are scheduled to be delivered at a rate of 10 fighters per year in subsequent years. This 

process showed that it will take almost 15 years to get the first F-35A aircraft and will 

take 10 years more to receive all 100 F-35A fighters. The Turkish Air Force plans to 

operate these multirole aircraft for half a century. Thus, these aircraft are a major pillar in 

Turkey’s security. There will likely be future unanticipated conflicts which Turkey must 

be ready for over that time period. At this point, campaign models provide the ability to 

analyze the results of possible future conflicts given a specific force structure. Therefore, 

campaign modeling is a uniquely powerful tool in identifying capability gaps and in 

helping generate new and effective force structures based on future platform acquisitions. 

On the other hand, campaign models also allow armed forces to analyze the capabilities 

of weapons platforms currently in the force. 

3. Error Assessment of Hierarchical Combat Modeling 

By utilizing hierarchal combat modeling, decision makers can observe the 

possible effects of changes in weapon platforms on tactical performance and campaign 

effectiveness. Hierarchal combat modeling has proven beneficial to decision makers; 

however, this process may involve some error since the sample mean (average) outputs of 

lower-level models are typically used as inputs to higher-level models. Because the 
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outputs of the lower-level models generally have probability distributions, if the 

variability in lower-level models is ignored, then the outcomes of higher level model 

simulations may be biased or have understated variance (Lucas, 2000; Pav, 2015). 

Ultimately, the errors caused by using the means of lower-level models may result in 

biased and suboptimal decisions. As a consequence, operations research analysts cannot 

accurately quantify and assesses the risk. Sam Savage emphasized the importance of 

assessing risk in his research paper: The Flaw of Averages Why We Underestimate Risk in 

the Face of Uncertainty. Savage (2002) stated that “we need to stop thinking of 

uncertainties as single numbers—the average—and instead begin thinking of them as 

shapes, or distributions. And to deal with those distributions, we need to take advantage 

of modern computers for probability management” (p. 3). 

C. RESEARCH PROBLEM AND RESEARCH QUESTIONS 

As mentioned in the literature review section, using output from a lower-level 

model as input to a higher-level model by utilizing one of many possible sampling 

methods involves uncertainty. For instance, calculating a factor for a campaign 

metamodel by taking a sample mean of the output of an entity-level model is basically 

using point estimation, and therefore propagating forward merely a single point estimate. 

Since the sample mean is typically used, the variance of entity-level model output is not 

accounted for in the campaign metamodel. In other words, the uncertainty in the lower-

level model is not propagated through higher-level models. This uncertainty may cause a 

bias in the outputs of the campaign model. Utilizing different sampling methods may 

decrease the uncertainty; however, no method has been shown to fully propagate 

variances through the hierarchal models in use by militaries around the world. 

Consequently, in order to provide insights about error propagation and generate 

alternative ways to reduce uncertainty, this research is guided by the following questions: 

1. What are the results of using different methods (e.g., taking the sample 
mean, random sampling, design of experiment, etc.) to transform outputs 
from a lower-level air combat model into inputs to a campaign-level 
model? 

2. Is using a lower-level model’s output as input to a higher-level model a 
reasonable approach for air combat models? 
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3. Does use of the design generated from a space-filling nearly orthogonal 
Latin hypercube (NOLH) or a resolution V fractional factorial (R5FF) 
impact the results? 

 

D. SCOPE OF THE THESIS 

This study explores how the variance propagates through hierarchal air combat 

models using an engagement-level model and a campaign-level model. Several sampling 

methods are used to quantify the error propagation through our pair of hierarchal models. 

A two-on-two fighter aircraft engagement is selected as an engagement-level model and a 

basic engagement scenario is modeled using Map Aware Non-uniform Automata 

(MANA), an agent-based simulation (McIntosh, 2009). The outputs of the engagement-

level model are fed into a stochastic Lanchester linear law campaign model by employing 

different sampling methods. The Python (an open source available at 

http://www.python.org.) programming language is used to simulate the stochastic 

Lanchester campaign. The outputs of the campaign Lanchester model include the 

probability of winning and the expected number of casualties when the campaign is won. 

These outputs are analyzed and compared using statistical tools such as Python and 

JMP(an open source available at http://www.jmp.com). Using a data library generated by 

executing designs of experiment on the MANA engagement model, regression analysis 

and other techniques are utilized to determine the effects of engineering-level changes on 

campaign output. Finally, the influence of the different sampling methods on risk 

assessment is evaluated, and suggestions are presented to enable adequate risk 

assessment. 
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II. MODELING, SAMPLING AND ANALYSIS TOOLS 

In this chapter, we present an overview of the modeling, sampling, and analysis 

tools used in this study. As previously mentioned, we use MANA to construct the 

engagement-level model scenario. To explore the effects of different combinations of 

performance characteristics on the aircraft’s performance, both Nearly Orthogonal Latin 

Hypercube (NOLH) and Resolution V Fractional Factorial (R5FF) experimental designs 

are utilized. Both of these methods significantly downsize the required number of runs, as 

compared to a full factorial design that would test all possible combinations of the 

experimental factors (variables). 

In this chapter, we briefly discuss the use of MANA, design of experiments 

(DOE), random sampling, and statistical metamodeling. We also describe the two 

software programs that we use for campaign-level modeling and statistical analysis. 

A. USING NOLH AND R5FF EXPERIMENTAL DESIGNS TO EXPLORE 
FACTOR COMBINATIONS OF THE MANA ENGAGEMENT MODEL 

Despite the fact that combat simulation modeling provides benefits and 

convenience for operations research analysts, it comes with substantial challenges. As 

mentioned in the literature review section, compared to live fire tests using military 

assets, these simulations are less expensive and dangerous. However, they are very 

complex, time-consuming, and require a deep knowledge of different computation 

programming languages and software. Due to the complexity of the phenomena being 

modeled, combat models tend to be exceedingly complex, often with thousands of input 

variables, many of which are uncertain. Moreover, they often take a long time to run even 

one replication. A single large-scale STORM run may take several hours to run.   The 

large number of inputs of interest usually makes it infeasible to run all combinations of 

input variables that an analyst desires. To fully explore and evaluate an experiment with k 

variables, each with m levels, it would require a number of experiments equal to mk 

multiplied by the number of stochastic replications per combination of variables 

(Sanchez, Lucas, Sanchez, Nannini, & Wan, 2012). This type of design, that explores all 
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possible combinations of variables in a brute-force manner, is called a full factorial. To 

give an example, suppose a simulation has 20 factors that an analyst wished to explore, 

each with three levels (say that corresponded to “low,” “medium,” and “high). In order to 

explore all of the factor combinations, 320 runs, which is 3,486,784,401 (about 109.5), is 

required. If each run takes just one minute, then running all combinations on a single 

processor would take 6,634 years. If replication is necessary, because the simulation is 

stochastic, then the time required must be multiplied by the number of replications 

needed. Luckily though, “Efficient design of experiments can break this curse of 

dimensionality at a tiny fraction of the cost,” (Sanchez, Lucas, Sanchez, Nannini, & Wan, 

2012). In order to break the curse of dimensionality, there are many options, and we 

explore the use of the Resolution V Fractional Factorial (R5FF) and the Nearly 

Orthogonal Latin Hypercube (NOLH). By carefully selecting input combinations, these 

designs reduce the number of simulation runs required to extract valuable information. 

By confounding estimates of higher order terms that are usually not of practical size or 

interest to analysts, R5FFs dramatically reduce the number of runs needed while 

providing the ability to estimate all main effects of the factors and all of their two-way 

interactions (Kleijnen, Sanchez, Lucas, & Cioppa, 2005). However, R5FFs only sample 

each factor (variable) at two levels, at the so-called “corners” of the input space. In order 

to reduce the number of required runs while simultaneously providing the analyst with 

analysis flexibility not provided by the use of the R5FF, NOLHs are often used (Cioppa 

and Lucas, 2007). NOLHs are efficient and space-filling designs that provide information 

throughout the experimental region, including the interior. They allow users to fit a 

variety of metamodels, including regression models with second and higher-order terms; 

most commonly, quadratic and two-way interaction effects. In Figure 4, we compare the 

space-filling capabilities of both design types for four factors with two levels each. 
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Figure 4.  R5FF (16 DPs) vs. NOLH (17 DPs) 

For this study, both the R5FF and the NOLH and are chosen to generate 

experimental designs for the MANA model. There are several reasons which led the 

author to use NOLH and R5FF designs. First of all, both designs are efficient in terms of 

required runs. However, the space-filling feature of the NOLH gives it a potential 

advantage in comparison to the R5FF design. In a particular, because it is space-filling, 

output from the NOLH can be used to identify nonlinear relationships and “knee in the 

curve” values as well as breakpoints and step functions. The R5FF is sometimes desirable 

because it tests at the more extreme “corner” points. 

Previously, both of these experimental design methods were used in a thesis study 

by LT Russell G. Pav in 2015. In his thesis, he conducted an analysis to determine if the 

means and variances of MOEs of interest were statistically different by experimental 

design (Pav, 2015). To do that, he ran R5FF and NOLH experimental designs of 

experiment on his MANA simulation. Pav observed that the differences among the mean 

and standard deviations of MOEs were not practically significant. However, the terms in 

metamodels he built were not identical. In this study, we will examine if his findings 

remain true using a different scenario. 

In summary, these designs allow the analyst to simultaneously fit complicated 

metamodels to the influential factors while exploring many variables for significance 

(Sanchez, S. M; Lucas; Sanchez, P. J.; Nannini; & Wan, 2012). As a result of this 

process, intelligent experimental design and the use of statistical metamodeling not only 
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reduce the simulation runs required to obtain useful output, but also enable us to analyze 

broad ranges of many factors. 

B. ENGAGEMENT LEVEL MODELING TOOL: MANA 

MANA (Map Aware Non-Uniform Automata) is an agent-based modeling 

environment that was developed at New Zealand Defense Technology Agency (DTA). 

MANA has been used in military operations analysis (OA) studies by many organizations 

around the world (McIntosh, 2009). This stochastic agent-based environment uses 

discrete time steps. In MANA, an abstraction of an engagement-level scenario can 

include key physical and behavioral attributes of the military entities modeled. The 

MANA developers strove to minimize the unnecessary detailed physical features of the 

military assets being modeled. 

MANA has a well-developed and intuitive user interface. The “Edit Squad 

Properties” window in MANA includes several windows, including: General, Map, 

Personalities, Tangibles, Sensors, Weapons, Intra Sqd SA, Inter Sqd SA, and Advanced. 

All of these windows allow the user to enter detailed characteristics of the battlefield and 

military assets being modeled. For instance, Figure 5 is the “Personalities” window, 

through which users can define the behaviors of the military assets when they interact 

with other entities, such as enemy, friend, neutral, etc. For example, if a positive number 

is selected for any enemy scroll bar, it means that the agent will tend to go towards a 

detected enemy. If the value is negative, the agent will try to move away from an enemy. 

The magnitude of the value determines how strong this desire is. MANA uses heuristics 

to weigh the multiple goals of an agent in deciding where to move, who to shoot at, etc. 

These input characteristics allow the user to control agents’ behaviors in missions by 

giving them values that determine how they behave and interact with other agents and the 

environment. Additionally, target prioritization, search patterns, rules of engagement, 

etc., can be determined by assigning input values according to their importance for the 

mission. 
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Figure 5.  MANA Personalities Window 

Figure 6 is a screen shot of the “Sensors” window that allows the user to enter 

sensor ranges and probabilities for different sensor types, e.g., radars. Also, there are 

detailed settings, such as detect, classify, and target classes if the advanced mode is 

selected. The “Tangible” input includes the settings of agents’ physical attributes, such as 

maximum speed or armor thickness. 
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Figure 6.  MANA Sensors Window 

The column on the far right of the window is called “Trigger States.” It allows the 

user to change the behavior of military assets in different states, such as “Reach 

Waypoint,” “Enemy Contact,” “Squad Death,” “Ammo Out,” etc. This allows the agents 

to change their physical and/or behavior properties according to user defined events, or 

“triggers.” When one of the trigger state events occurs, a military asset gets new settings 

and behaviors, as defined by the user. For example, when an Ammo Out condition is 

triggered, an agent may decide to end his mission and return home. 

MANA was selected as our engagement-level simulation for this study because of 

its utility and ease of use. Moreover, MANA has been extensively used at NPS (see: 

http://harvest.nps.edu), and additionally, is readily “data farmable”–which means that 

software exists to run it in parallel over many processors.  
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MANA provides many options for entering the physical characteristics of military 

assets, such as sensor capabilities, weapon effectiveness, speed, and fuel capacity—as 

well as editing battlefield features such as size, terrain type, elevation, etc. The ability to 

specify the characteristics of military assets, such as fighter aircraft, AWACs, and missile 

systems makes MANA the ideal stochastic simulation software for this study. However, 

some of MANA’s limitations affected the veracity of our air-to-air mission-level combat 

model. These include not being able to readily change the probability of hit of a missile 

for different enemy aircraft speeds and headings. Therefore, the scenario we implement is 

abstracted from reality. Of course, more complicated mission-level models, such as 

BRAWLER, are more realistic; however, they are too cumbersome to work with in the 

time frame of this research. 

C. SAMPLING METHODS TO GENERATE INPUTS FOR HIGHER LEVEL 
MODEL 

 In our demonstration of hierarchical combat modeling, we use several sampling 

methods to obtain data from the output data library of the engagement-level model. We 

briefly discuss those in this section. 

1. Using the Overall Sample Mean 

A sample mean (average) is a statistic computed from a collection of data and it is 

the most commonly used estimator of a population mean. Suppose that there are n 

number of random variables in a sample and X1, X2, ….,Xn are identically distributed 

random variables or observations such that they have a finite population mean μ and a 

finite population variance σ2. The sample mean (𝑋𝑋�(𝑛𝑛))and sample variance (𝑆𝑆2), shown in 

Equations (2.1) and (2.2), respectively, are typically used to estimate μ and σ2 (Wackerly, 

Mendenhall, & Scheaffer, 2007).  

 𝑋𝑋�(𝑛𝑛) = ∑ 𝑋𝑋𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

 (2.1) 
 

 𝑆𝑆2 =
∑ �𝑋𝑋𝑖𝑖−𝑋𝑋�(𝑛𝑛)�

2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−1
 (2.2) 

Often, only the sample mean, and not the variance, is fed forward as a single point 

estimate to a higher-level model. But of course, doing so suppresses much information 
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about the distribution of outcomes, such as the output measure’s range, modality, and 

skewness. 

2. Random Sampling  

Random sampling can be accomplished in many ways, for example each data 

point being equally weighted or not, or sampling “with” or “without replacement.” In our 

application, each member of the population (or data point in the data library) has an equal 

probability of being chosen. Also, we perform our sampling without replacement. 

Therefore, once a data point is chosen, it is not chosen again for that particular round of 

sampling. Additionally, each “subject” (data point) is chosen independently from the 

other elements of the population data. That is, choosing one data point for use does not 

make it any more or less likely for any other member of the population to be chosen. 

D. CAMPAIGN LEVEL MODELING TOOLS 

1. Lanchester’s Laws 

As briefly mentioned in the first chapter, Frederick Lanchester developed paired 

differential equations for modeling the attrition in combat (with an eye towards aerial 

combat) during World War I (Lanchester, 1916). His square law equation models losses 

over time as a function of the sizes of the forces and the rates of attrition inflicted by an 

individual unit. Lanchester postulated that this modeled “modern combat” and this 

variant is often applied to aimed fire situations. Lanchester argued that his other model, 

the linear law, characterized “ancient combat” contextually, he envisioned this as a series 

of one-on-one duels with a constant loss exchange ratio. There is also an area fire 

interpretation to the linear law.   

The square law models an aimed fire campaign of two forces. Red forces fight 

Blue forces, and equations 2.3 and 2.4 define Red’s instantaneous loss-rate as being 

proportional to Blue numbers and vice versa. The Red force size is denoted by x and the 

Blue force size is denoted by y, while a is the attrition coefficient of Blue (i.e., the rate at 

which one Blue attrits Red) and b is the attrition coefficient of Red. 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑎𝑎𝑎𝑎 (2.3) 
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 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑏𝑏𝑏𝑏 (2.4) 

The linear law model represents a series of independent one-on-one duels, as with 

ancient swordsmen, or an area fire battle. The losses of each force are proportional to 

both the number of attackers (other side’s force size) and the number of targets (their own 

force size). Linear law instantaneous loss-rates are shown in equations 2.5 and 2.6. 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑎𝑎𝑎𝑎𝑎𝑎 (2.5) 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑏𝑏𝑏𝑏𝑏𝑏 (2.6) 

In the research that this thesis builds upon, Pav chose to implement a square law 

in the campaign-level model of his model hierarchy. In contrast, in this study, the 

campaign-level air combat model implements a stochastic extension of Lanchester’s 

linear law. The decision of which Lanchester law should be used was made based on the 

aforementioned research of three academicians at the University of York, which indicated 

that the linear law is more appropriate. 

In order to calculate the attrition coefficients for each side, we use equations 2.7 

and 2.8. 

 𝑎𝑎 = 𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)∙(𝑜𝑜𝑜𝑜𝑜𝑜 𝑥𝑥 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)∙(𝑜𝑜𝑜𝑜𝑜𝑜 𝑦𝑦 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) (2.7) 

 𝑏𝑏 = 𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)∙(𝑜𝑜𝑜𝑜𝑜𝑜 𝑥𝑥 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)∙(𝑜𝑜𝑜𝑜𝑜𝑜 𝑦𝑦 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) (2.8) 

In addition to the force sizes and attrition coefficients, the stochastic model has an 

uncertain time element. The time that passes until the next casualty comes from an 

exponential distribution with rate λ (Washburn and Kress, 2009). In a stochastic 

Lanchester linear model, this rate for each force is calculated by multiplying the force 

size of Red (x) and Blue (y) by the related force’s attrition coefficient (a or b), which is 

shown in equations 2.9 and 2.10. 

 𝜆𝜆𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑎𝑎𝑎𝑎𝑎𝑎  (2.9) 

 𝜆𝜆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑏𝑏𝑏𝑏𝑏𝑏  (2.10) 
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Since the time to the next casualty is assumed that the minimum of two 

independent exponential distributions, the expected time to the next casualty can be 

calculated using equation 2.11. In our model, we calculate the time until the next casualty 

based on a random draw from an exponential distribution. The probability that the next 

casualty suffered will be a Red is determined with equation 2.12. We note that, 

unconventionally, we choose Red to be “our” side, the “good” side. 

 𝐸𝐸[𝑇𝑇|𝑥𝑥, 𝑦𝑦] = 1
𝜆𝜆𝑅𝑅𝑅𝑅𝑅𝑅+𝜆𝜆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 (2.11) 

 𝑃𝑃[𝑋𝑋|𝑥𝑥, 𝑦𝑦] = 𝜆𝜆𝑅𝑅𝑅𝑅𝑅𝑅
𝜆𝜆𝑅𝑅𝑅𝑅𝑅𝑅+𝜆𝜆𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵

 (2.12) 

Employing the equations given in this section, an air campaign between Red and 

Blue, implementing the stochastic extension of Lanchester’s linear law model, is 

instantiated using the programing language PYTHON 2.7.   

2. Python 2.7 

The programming language Python, version 2.7, was used to implement the 

aforementioned stochastic Lanchester linear law campaign model. Python 2.7 is an open 

source language that includes many analytical packages and tools that vary according to 

the purpose of the user. It can be freely downloaded from the http://www.python.org. 

Python 2.7 is a powerful, versatile, general-purpose and dynamic open-source coding 

language that provides a wide range of available functions and packages. Also, the author 

utilizes experience in coding in the IPython Notebook, which is an interactive 

computational platform of Python, where the programmer can read/write data easily, run 

the code interactively block by block, and add text, plots, etc., as desired. Python is 

deemed by many to be easy to read, write, and understand. 

E. ANALYSIS TOOLS  

1. Metamodeling 

Understanding the relationship between input factors and the outputs of a model is 

essential in simulation modeling. One way to quantify the relationship is through a 

metamodel. A metamodel is a “model of a model.” For example, a relatively simple 

http://www.python.org/
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regression equation may be used to approximate the relationship between the inputs and 

outputs of a complex simulation. Meta-modeling provides the analyst with a surrogate 

model that is much more intuitive and fast-running than the original underlying model or 

dataset. Used properly, in some situations, metamodels can prevent an analyst from 

having to run time-consuming simulations. Various types of metamodels are used in 

simulation analysis, including regression equations, partition trees, and Gaussian process 

models (Barton, 1998). 

2. JMP 

JMP Pro 12 is used as the statistical analysis tool for this study. It is a computer 

program created for data visualization and statistics, developed by a unit of the SAS 

Institute. JMP is widely used by analysts in the applications of design of experiments and 

scientific research. JMP allows users to interactively manipulate and investigate their data 

without writing code. In addition to easy data visualization, this program allows the user 

to utilize many powerful visual and statistical tools, such dynamically-linked plots and 

graphs, histograms and summary statistics, regression models, partition trees, and many 

others. More information about JMP can be obtained at http://www.jmp.com/. 

3. Distributed High Performance Computing (HPC) 

In order to execute the designs of experiment used in this study, we utilized the 

high-performance computing cluster, consisting of 160 processors, owned and 

maintained by the Simulation Experiments and Efficient Designs (SEED) Center of the 

Operations Research Department at the Naval Postgraduate School. The cluster has 

software installed that automatically generates and manages the running of individual 

design points of an experimental design. Additionally, post-processing software has been 

written to manage the collection and summarization of individual simulation run outputs 

into one file convenient for analysis.  
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III. SCENARIO AND MODEL DESCRIPTION 

In this chapter we describe the scenarios that were employed in our study of 

hierarchal combat modeling, including the limitations and capabilities of the software 

programs used in the modeling. The scenarios give context to the models developed. In 

the last part of this chapter, our high-resolution and low-resolution models are explained 

and illustrated with diagrams. 

A. SCENARIO DEVELOPMENT PROCESS 

In this study, one country, herein referred as Red, has a potential future air 

campaign against a fictional enemy country, herein referred to as Blue. Recall that Red is 

“our” side. Red is a Western country and her Air Force uses Western Bloc–type aircraft, 

radars, and weapon systems; whereas Blue’s Air Force uses Eastern Bloc equipment. In 

more detail, Red has fighter aircraft FX, airborne warning and control system aircraft 

AWACS, and Blue has fighter aircraft MY and a stationary radar system. Red FXs carry 

advanced medium-range air-to-air radar guided missiles, which we will call X-MRGM. 

On the other hand, Blue MYs carry Y-MRGM missiles, which have similar features to X-

MRGM and are made by an Eastern Bloc country. 

Due to the fact that the main purpose of this research is to analyze the propagation 

of error within hierarchal air combat models, a basic scenario was generated. In our 

experimental study, our context is that Red is considering investments in air combat 

technologies, such as aircraft, radars, and weapon systems. The simplicity of the given 

scenario and the models generated will hopefully allow us to focus on error propagation 

and facilitate other analysts in using the models of this study in future studies. 

B. CONTEXT FOR THE SCENARIO 

 A Red reconnaissance jet FX was intercepted and shot down by a country Blue’s 

surface to air missile (SAM) in international airspace. Two Red jet pilots were killed. The 

incident was a part of a series of incidents between Red and Blue since the beginning of 
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Blue’s independence war, and this incident escalated the tensions between the two 

countries. 

After the Red jet was shot down, Red adopted new rules of engagement. In the 

following days, Red’s Air Force shot down one MY and one Blue drone after they 

violated Red’s airspace. Blue’s Air Force then procured 100 new MY fighter aircraft 

from country yellow. MY has similar features to Red’s FX aircraft.  

A couple of months later, two Red FXs take off from an air based located in the 

south east of the country. The Red FXs are executing a combat air patrol (CAP) close to 

the border with Blue when one of Blue’s SAM launchers fires a missile targeting Red 

FXs. The FXs dropped flares and manage to get rid of the incoming SAM missile. 

Afterwards, to prevent further missile attacks, the Red government decides to retaliate 

with an effective air strike on the SAM missile launcher located in the northwest part of 

Blue. Therefore, the Red Air Force prepares an air-to-ground attack plan. Based on their 

intelligence, Red headquarters learns that the Blue Air Force will defend the SAM missile 

launcher with a new MY squadron located very close to the launcher. 

In order to attack the SAM launcher, Red’s Air Force forms an air strike package, 

including bomber aircraft, 25 FX fighter jets (for possible air-to-air engagements), one 

AWACS (for pre-raid and post-raid reconnaissance) and one tanker aircraft (to extend the 

mission radius). The FXs are equipped with air-to-air missiles X-MRGMs, and will fly to 

the operation area. On the other hand, Blue has weaker intelligence that there may be a 

Red air raid. Therefore, he has 25 MY aircrafts on scramble mode in the closest base to 

its border with Red. Those MYs are loaded with Y-MRGM missiles. 

The Red AWACs has a 360° view of the horizon. Blue’s stationary radar can see 

if any Red aircraft flies towards Blue. Both radars can simultaneously detect and track 

multiple air targets. 

Like every other simulation model, the model created for this study cannot 

capture all real-world conditions, behaviors, and characteristics of military assets. Some 

of the more important limitations, constraints, and assumptions are discussed in the 

following paragraphs. Based on our contextual scenario, to see the engagement 
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performance of FX and MX, an engagement-level model was generated in MANA. In the 

engagement-level model, two versus two air-to-air engagements are simulated in order to 

generate a data library for the campaign model. Later, using outputs of the MANA 

model, attrition coefficients for each aircraft type are calculated. These attrition 

coefficients are then used in a stochastic linear Lanchester model as a campaign-level 

model with 100 Red aircraft versus 100 Blue aircraft engaging each other over four time 

periods. 

C. LIMITATIONS AND ASSUMPTIONS 

First, accessing real performance characteristics of military assets, such as radar 

capabilities and missile ranges, is impossible without making this research classified. 

Since our focus is on error propagation, actual data is not needed. Therefore, IHS JANE’s 

web (http://www.janes.com/) database is used to generate plausible and reasonable 

aircraft, radar, and missile performance characteristics. Again, the focus here is on the 

methodology not on specific weapon systems, and keeping the study unclassified, so 

other researchers will be able to use this paper in their future studies.  

In addition to using unclassified performance characteristics, the constraints of 

MANA resulted in a simpler and less detailed scenario than could have been constructed 

with a higher resolution model. 

 

(1) Assumptions and Limitations for the Engagement-Level MANA Model 

1. Before making the decision of how many aircrafts to include in our high-
resolution MANA model, discussions with three fighter aircraft pilots and 
open Internet research about air combat operations were undertaken by the 
author. Both the discussions and air combat history showed that fighter 
aircraft do not fly alone. Therefore, instead of one-on-one engagements, 
two-versus-two aircraft battles were selected for the MANA model. 

2. One of the major factors that impact the probability of hit and effective 
range of an air-to-air missile is the geometry (i.e., routes and directions) of 
the engaging aircraft. A missile reaches its maximum effective range if a 
head-to-head engagement occurs, other than that; the effective maximum 
range significantly decreases. The probability of hit and the effective 
range of a missile are not readily modeled in MANA as a function of the 
aircrafts’ orientations and kinematics. 
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3. In MANA, the agents cannot explicitly exercise fire control over wire-
guided munitions (Pav, 2015) and missile flying time is neglected. 
Therefore, guided weapons, such as a missile, were modeled as a bullet 
that has probability of hit that varies according to range, but not aspect or 
heading. 

4. Each aircraft is assumed to have unlimited air fueling and missiles. 

5. The aircraft of each force carry one type of missile, but differ according to 
the force type. This holds for the radars as well.  
 

6. Tactical deployment of aircrafts is minimal since air combat tactical 
formations are difficult to model in MANA. 

 

(2) Assumptions and Limitations for the Campaign-Level Model 

1. It is assumed that modern aircraft can engage more than one aircraft. 

2. Varying Red and Blue force sizes while also varying engineering factors 
would increase the amount of work and analysis, since it would add two 
more dimensions to our model inputs and consequently to our data library. 
Thus, we keep each side with a fixed number of aircraft (100). 

3. The history of air combat operations shows that air operations can be 
executed more than once a day or once in more than a day. For instance, 
the Falkland war between Argentina and the United Kingdom over two 
British overseas territories took ten weeks—with many days not involving 
air battles (Chant, C., 2001). On the other hand, air operation time periods 
can be executed sequentially in a day, like in surge operations early in the 
Iraq War by the U.S. Forces (Pape, 2004). Additionally, a discussion about 
air combat operations with Tom Lucas and Wayne P. Hughes was made 
by the author before making the decision of what time element to use in 
attrition coefficient calculations (T.W. Lucas & W.P. Hughes, personal 
communication, March 10, 2016). Based on historical experience and the 
discussions, to calculate attrition coefficients, a single air operation time is 
used as a period—with four periods modeled. 

4. All forces are homogenous. 

5. Neither force fights to the death. Each side has a breakpoint (tolerance for 
loss), beyond which they choose to terminate battle for that time period or 
campaign. 

6. Precise tactical deployments are not used. 

7. Only force size and attrition coefficients are provided numerically to 
predict the outcome and number of casualties of each side at the end of the 
campaign. 
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D. HIERARCHICAL MODELS OF APPLICABLE SCENARIO 

Based on the applicable scenario, modeling and sampling tools were employed to 

generate a hierarchal air combat analysis including a high-resolution (engagement-level 

MANA model) and a low-resolution (campaign-level stochastic Lanchester linear model) 

model. The models that were used in this study are depicted in Figure 7 as a hierarchy 

pyramid. 

 
Figure 7.  Hierarchical Air Combat Models of This Study 



 32 

The two models shown in Figure 7 constitute the hierarchal air combat model 

family we will experiment with. The measures of effectiveness (MOEs) of the 

engagement-level model are used to generate measures of performance (MOPs) input for 

the campaign-level model by utilizing various sampling methods. The MOEs and MOPs 

for each level model are shown in Table 1. 

Table 1.   MOPs and MOEs of Each Model Level. 

 
 
 

Table 1 briefly shows the relationship between the MOEs of the engagement-level 

model and the MOPs of the campaign-level model. Since performance characteristics are 

varied by utilizing DOE, effects of those changes on campaign MOEs will be analyzed. 

The probability of winning is denoted as P(Win). This provides the ultimate measure of 

success, while the expected number of casualties in victories quantifies some of the 

uncertainty of campaign outcomes that creates risk for decision makers. 

(1) High Resolution – Engagement-Level Model 

As previously mentioned, the engagement-level model of a two versus two air 

engagement is developed in MANA. The simulated battlefield is 480 by 500 miles. Two 

Red fighter jets and one Red AWACs take off from the southern part of the Red country 

in order to escort Red bombing jets whose goal to bomb a SAM launcher in the western 

part of the Blue country. If any Red fighter survives at the end of an engagement, it 

returns to base. Red fighters have 100% reliable communication with the AWACS and 

the AWACS provides improved radar support to detect enemy aircraft and transfer 

enemy aircraft coordinates to the Red jets. The AWACS and fighter jets fly with the same 

speed of 400 kilometers per hour; however, the AWACS flies at a very high altitude, 



 33 

which allows him to stay away from any engagement with hostile aircraft. After the Red 

AWACS detects enemy aircrafts, the Red fighters’ speed increases from 400 kilometers 

per hour to 800 kilometers per hour to engage enemy combatants as soon as possible. On 

the other hand, Blue fighter pilots are waiting on the ground for scrambling. After the 

stationary radar located in northern side of Blue country detects enemy aircraft and sends 

information about them, two blue pilots will quickly get into their fighters and move to 

intercept the intruders with a speed of 800 kilometers per hour. Each two-vs-two 

engagement starts with the take-off of the Red fighters and ends with the landing of the 

last surviving aircraft after shooting down the both fighters of other side. The length of 

engagement was selected based on the discussion with Lucas and Hughes ( T.W. Lucas & 

W.P. Hughes, personal communication, March 10, 2016). See Figure 8 for an annotated 

MANA screen shot of the model. 

 
Figure 8.  High Resolution Engagement-Level MANA Model 

(2) Low Resolution – Campaign Level Model 

As previously mentioned, this thesis employs a stochastic Lanchester linear model 

as the campaign model. In our campaign model, Red has 100 aircraft and Blue has 100 
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aircraft. Since this study’s goal is to analyze error propagation within hierarchal air 

combat models, to keep the campaign model simple, the campaign consists of four time 

periods that include the following features. Red performs 4 air operations including 25 

fighters each time and blue counterpoises these air operations with same number of 

fighters. The main features of the campaign model are presented below. 

• For each of the four time periods, 25 Red will fight 25 Blue.  

• Each side will have a break point (tolerable loss) of six remaining aircraft, 
just under a quarter of the operation’s force size. If a break point is 
reached, that side will disengage and that time period’s battle will end. 

• At the end of the four time periods, the winner is the side with fewer 
casualties. There is no tie situation. 

• Length of each operation are time between operations are neglected since 
we are interested in P(Win) and number of casualties. 

• The data generated from each run includes: Red casualties, Blue 
casualties, and the winner of the campaign. 

The campaign model of this study is written by the writer as a code in Python 2.7 

notebook platform, where the code is presented in appendix section of this paper. 
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IV. DATA-FARMING, MODEL RUNS, AND ANALYSIS 

This thesis examines methods for linking a campaign model’s inputs to an 

engagement model’s outputs. Therefore, one of our goals is to make recommendations 

about how to quantify the uncertainty within campaign model output, given variability in 

the inputs, which will allow analysts to assess risk to the commander more 

comprehensively. Two models that together form our hierarchy of models, a two-vs-two 

engagement level model and a campaign level stochastic Lanchester model are developed 

and employed.  

The overall work flow of our analysis is shown in Figure 9. In steps 1A through 

1E, we use two different experimental designs, described in the next section, to perform 

an experiment on the MANA model. Each MANA replication starts with the take-off of 

the Red fighters and ends with the landing of the last surviving aircraft after shooting 

down the both fighters of other side. We then analyze both the full and summarized data. 

In the summarized data set, we summarize each Design Point (DP) by its mean and 

standard deviation, over the stochastic replications. The full and summarized data from 

our MANA experiments form what we will call the MANA library of data. In step 1F, we 

calculate estimates of a and b (inputs to the Lanchester model) for each run of both 

NOLH and R5FF data libraries. Additionally, a column called “Win?” is calculated—and 

the assigned value is 0 if our side, the “Red” side lost and 1 if our side won. We remind 

the reader that in our model we take an unconventional approach in deciding “Red” to be 

the “good guys.” The side with fewer casualties is the winner in MANA model. In the 

summarized data, mean(Win?) is renamed P(Win), our estimate for the probability of 

winning. In step 1G, using the summarized data, we fit stepwise regression models for a, 

b, and P(Win), as a function of the experiment variables. We then compare the NOLH 

and R5FF results, including the metamodels generated. 

In steps 2A through 2C we explore different methods, which we explain in detail 

in this chapter, to translate the MANA results into inputs needed for the campaign model. 

Step 2C involves simulating the “direct linking” of the campaign model’s inputs to the 

engagement-level model’s outputs. 
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In step 2D.1, we perform a design of experiment directly on the stochastic 

Lanchester model, varying a and b over ranges informed by the MANA library of data. In 

step 2D.2, we fit a regression model for P(Win) as a function of a and b. 

In step 2D.3, a composite (embedded) metamodel of P(Win) is constructed. We 

explain the composite (embedded) metamodel in detail in the further part of this chapter. 

from step 2D.2, we obtain P(Win) as a function of a and b. And, from step 1G, we obtain 

a and b as functions of the experiment variables. So, in this step, we simply substitute 

a=f(experiment variables) and b=f(experiment variables) into P(Win)=f(a,b), obtaining a 

composite, embedded metamodel P(Win)=f(experiment variables). 

In step 3, we compare the composite metamodel approach to the result of 2C, 

directly linking the Engagement and Campaign Model. And in step 4, we compare the 

campaign metrics based on the different sampling methods. The next section will 

describe each of these steps in more detail. 
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Figure 9.  Overall Work Flow Diagram 
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A. ENGAGEMENT-LEVEL MODEL PROCESS 

1. Data Farming (Blocks 1B, 1C of Work Flow Diagram) 

The performance characteristics of the aircraft in the model are notional. In the 

real world, these characteristics would vary depending on enemy counter-measures, 

aircraft orientation, radar and missile capabilities, operator training, and other aspects of 

air-to-air combat. In order to explore the impact of aircraft characteristics on performance 

in the MANA model, we conduct a designed experiment. Data farming is our metaphor 

for iterated design and analysis of experiments. We use two different experimental 

designs, so that we may compare and contrast the results. The two designs utilized are the 

Nearly Orthogonal Latin Hypercube (NOLH) and the Resolution V Fractional Factorial 

(R5FF). Both of these techniques are relatively efficient, with respect to the number of 

design points required, as compared to a full-factorial design which tests all possible 

combinations. One key difference between the two is that the NOLH is a space-filling 

design that allows flexibility in the analysis (for example, higher order terms can be 

estimated in a regression model) while the R5FF tests each factor at only two levels (low 

and high). Therefore, an advantage of the R5FF is that it tests the more extreme “corner 

points” but does not allow for capturing curvature in the response surface, via estimation 

of quadratic or higher terms. By employing both experimental design methods, 

performance characteristics of Red and Blue aircraft were varied around open source 

(HIS Jane’s data library) base case values. A total of ten variables were varied, and these 

are shown in Table 2. 

Another advantage of the NOLH design is that it can be easily developed using a 

spreadsheet freely available from the SEED Center for Data Farming’s website 

(http://harvest.nps.edu). Analysts have several catalogued designs in the spreadsheet to 

choose from. The catalogued designs have different numbers of design points (DPs) 

according to the number of factors desired in the experiment. 
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Table 2.   Red and Blue Aircraft Design Factors in DOE for MANA Model. 

 
 

Although 65 design points would have been sufficient for our 10 factors, we 

chose the next larger catalogued design, the one containing 129 design points, in order to 

fill more of the space, and also to have a number of design points close to the number of 

design points in the R5FF. The number of DPs required for a R5FF for 10 variables is 
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128. An advantage of having similar numbers of DPs for the two designs is so that 

statistical power (the ability to detect a statistically significant effect, if one is present) 

should be roughly equal (for main effect models—with an advantage to the optimal 

R5FF). This is advantageous so that the metamodels created from each design’s output 

are more directly comparable. 

2. Design Point Analysis 

In order to generate a scatter plot of the experiment factors and generate a matrix 

of pairwise correlations to analyze design points, we conduct a multivariate analysis in 

JMP. The results, for the NOLH design and the R5FF designs, are shown in Figure 10 

and Figure 11, respectively. 
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Figure 10.  Multivariate Analysis of NOLH Design Points 

Figure 10 illustrates the space-filling aspect of the NOLH design, which allows us 

to explore the interior of the experimental region as well as remain fairly flexible with 

our analysis goals. As previously mentioned, with the output produced from the NOLH 

design, we can estimate higher order terms in regression models, such as quadratic 

effects. We see from the correlation matrix that all pairwise correlations between 
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variables are below the +/- 0.03 threshold which satisfy the near-orthogonality constraint 

(Cioppa & Lucas, 2007). 

 
Figure 11.  Multivariate Analysis of R5FF Design Points 

In Figure 11, it is apparent that the R5FF design samples only at the corners of the 

input design space and also that all pairwise correlations between factors are equal to 0. 
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With the R5FF, all two-way interaction terms in regression models can be estimated; 

however, quadratic effects cannot be estimated because each factor is sampled at only 

two levels. 

3. Engagement Model Runs and Output Analysis (Blocks 1D, 1E of 
Work Flow Diagram) 

For both the NOLH and R5FF experiments, each DP was replicated 1,000 times 

in MANA. Thus, the NOLH experiment consisted of 129,000 runs while the R5FF 

experiment consisted of 128,000 runs. As mentioned before, these runs were generated in 

order to provide a library of data to use as input to the campaign model. In order to 

conduct data analysis and build metamodels, we use the JMP statistical software. 

a. Raw Data Analysis 

We start by generating histograms and summary statistics for Blue Casualties, Red 

Casualties, and Length of Engagement based on the NOLH and R5FF raw (full output) data 

libraries. The NOLH results are displayed in Figure 12 and the R5FF results are displayed in 

Figure 13. 
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Figure 12.  Engagement Model NOLH Raw Output Distributions 

The results in Figure 12 show that the mean of Red casualties is larger than the 

mean of Blue casualties, and that they have very similar standard deviations. We also 

note that most of the runs end with two casualties for one of the sides, as expected. We 

also see that the “Length of Engagement” distribution is bimodal. The bimodality is 

because the higher-valued mode is associated with Red winning and the lower-valued 

mode is associated with Blue winning. This result is due to the fact that the distance 

between the Red air base and approximate engagement area is larger than the distance 

from the Blue air base to the same engagement area. Therefore, if Red wins, it takes more 

time for them to return their base, and it was decided that this time should be factored 

into the inputs for the campaign model. 
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Figure 13.  Engagement Model R5FF Raw Output Distributions 

The R5FF data histograms and summary statistics share similar features as the 

NOLH raw data. However, in this case, there are, on average, more Blue casualties than 

Red casualties. The reason for the different result is likely due to the fact that the R5FF 

samples only at the more extreme “corner” points. 

b. Summarized Data Analysis 

We next summarized the raw (full) output data set by calculating the mean of Red 

Casualties, mean of Blue Casualties, mean of Length of Engagement, and P(Win), over 

the 1000 replications, for each DP. Therefore, N=129 for the summarized NOLH data 

and N=128 for the summarized R5FF data. We display the results in Figures 14 and 15. 
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Figure 14.  Distributions of  Engagement Model Summarized NOLH 

Output 

By visual inspection, the histograms look like they do not stray far from 

normality. However, in order to assess whether the underlying data is normally 

distributed more accurately and effectively, we utilize JMP’s ability to generate a normal 

quantile plot and conduct a goodness of fit test. 

 
Figure 15.  Distributions of  Engagement Model Summarized R5FF Output  
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The normal quantile plot for each of the outputs appear in Figures 14 and 15. 

Points falling far off the diagonal indicate that they are in a different location than would 

be expected from a normal distribution (Wackerly, Mendenhall, & Scheaffer, 2007). It is 

seen that most of the points in these normal quantile plots do fall close to the diagonal 

lines. We next performed JMP’s Goodness of Fit test, which utilizes the Shapiro-Wilk W 

test (Wackerly, Mendenhall, & Scheaffer, 2007). The null hypothesis for this goodness of 

fit test is that the data were drawn from a normal population. Rejecting the null would 

then indicate that we have evidence that the data do not come from a normal population. 

We do not show here the results for the goodness of fit test, but note that, except for the 

Length of Engagement distributions (for both data sets), all of the p-values were larger 

than our chosen 0.05 level of significance, therefore, we do not reject the null hypothesis 

that that these NOLH and R5FF summarized data are normally distributed. The lack of 

normality for the Length of Engagement distributions is not surprising since we already 

realized from visual inspection that the Length of Engagement distributions were 

bimodal. 

Finally, we compare the means of key metrics by design type (group), in order to 

determine if there is a statistically significant difference between the two groups. 

 
Figure 16.  Analysis of Means (Blue Casualties) by Design 
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Figure 17.  Analysis of Means (Red Casualties) by Design 

 
Figure 18.  Analysis of Means (Length of Engagement) by Design 

In Figures 16, 17, and 18, it can obviously be seen that there are numerical 

differences between the NOLH and R5FF output. These differences can be attributed to 
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the space-filling aspect of the NOLH design and the corner-point sampling of the R5FF 

design. 

First, in order to compare the means of both data sets, we combined the summary 

data of the NOLH and the R5FF into one dataset. Then, we employed the Welch Analysis 

of Variance (ANOVA) test to determine if there was a statistically significant difference 

between the means of the two groups of data. By visual inspection we were able to 

determine that the variances of the two groups are not equal, which is the reason we 

utilize the Welch test instead of the usual t-test that assumes equal variances. The Welch 

statistic is based on the ANOVA F test. However, the means are weighted by the 

reciprocal of the group mean variances (Welch, 1951; Brown & Forsythe, 1974; Asiribo, 

Osebekwin, & Gurland, 1990). If there are only two levels, as is the case here, the Welch 

ANOVA is equivalent to the unequal variance version of the t-test. The null hypothesis 

for this test is that the means are equal. All of the resulting p-values are less than .05, so 

we reject the null hypothesis that group means are equal. We note, though, that the larger 

the number of design points (N), the greater the statistical power. And we must keep in 

mind that the greater the power, the greater the chance that even small, practically 

insignificant differences in the means are detected as statistically significant. 

4. Linear Regression Analysis on Engagement Model Outputs (Block 1G 
of Work flow Diagram) 

We performed a stepwise linear regression analysis on both the NOLH and R5FF 

MANA data sets. One goal was to better understand the experiment space by discovering 

the most influential parameters, their key threshold values, and potential interactions 

amongst them. This process also is useful for verification and validation of the model. In 

order to explore the most effective factors on red side’s probability of win, we 

constructed metamodels for P(Win) of both engagement and campaign models. Another 

goal was to create metamodels for a, b, and engagement P(Win) , as functions of the Red 

and Blue experiment variables. As mentioned before, the metamodels for a and b will be 

plugged into campaign metamodel P(Win) = f(a,b), to yield a composite, embedded 

metamodel for campaign P(Win) = f(experiment variables).   
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a. Linear Regressions on the NOLH Data Library 

First, attrition coefficients a and b are calculated from the number of casualties 

and length of engagement statistics, using the formulas in equations 2.7 and 2.8 given in 

Chapter II. Recall that a represents the killing power of y (Blue) on x (Red = “good 

guys”), and that b represents the killing power of x (Red) on y (Blue).  

Stepwise linear regression models are fit to the estimates for a and b, to determine 

which factors best predict them. To fit the models, we utilized JMP’s stepwise regression 

capability, and utilized the default minimum Bayesian information criterion (BIC) to 

determine when to stop adding terms to the regression model. We allowed all main 

effects, quadratic effects, and two-way interaction terms to potentially enter the model. 

Upon obtaining the final model, we utilize JMP’s features to assess the assumptions of 

regression, namely that residuals are normally distributed with zero mean and constant 

variance. 

We start with the regression model for b, shown in Figure 19. 
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Figure 19.  Regression Analysis of Red Killing Power on Blue (b) Based on 

NOLH Data library 

We note that the RSquare value in Figure 19, is very high (0.919), which indicates 

that the model explains over 91% of the observed variability in the data. The Actual by 

Predicted plot additionally indicates that the model fits well. In the Sorted Parameter 

Estimates, the statistically significant variables and the size/direction of their effects on 

the response are shown. The Red aircraft’s missile effective range is the most influential 
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driver of b, which confirms intuition. The Residual by Predicted plot indicates that the 

assumption of zero mean and constant variance is reasonable, since there is roughly even 

scatter above and below the zero line. Though we don’t display it here, we also 

confirmed the normality of the residuals visually and through the goodness of fit test 

mentioned previously. The Prediction Profiler in Figure 19 illustrates the marginal effect 

of each predictor variable on the response, b. The absolute value of the slope of the line 

indicates the magnitude of the effect and the sign of the slope (positive or negative) 

indicates whether the effect has a positive or negative impact on the response as that 

variable is increased. JMP also allows us to save the prediction formula for b, and it is 

shown in Figure 20.  

 
Figure 20.  Prediction Formula for b Based on NOLH Data Library 
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Figure 21.  Regression Analysis of Blue Killing Power on Red (a) Based on 

NOLH Data Library  

Next we fit a linear model for Blue killing power on Red, a. The resulting output 

is shown in Figure 21. Like the previous regression model, the RSquare value is also very 

high (0.928). In the Sorted Parameter Estimates, we see that the Blue aircraft effective 

range is most influential and has positive relationship with a, which confirms intuition. 
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The Prediction Profiler shows that there is a non-linear (quadratic) relationship between 

the Red aircraft effective range and the response, a. The diagnostic plots indicate that the 

model is well-fitting and that the assumptions of regression are upheld. The prediction 

formula for a is given in Figure 22. 

 
Figure 22.  Prediction Formula for a Based on NOLH Data Library 

Additionally, we fit a model for P(Win). As mentioned previously, P(Win) is the 

probability that our side, Red, wins—that is, experiences few casualties than Blue. Figure 

23 shows the regression analysis statistics and plots for the final P(Win) metamodel. Here 

also, RSquare is high (0.926) and the model fits well. The most influential factors are the 

effective ranges of the aircrafts, and we note that the t-ratio of Red aircraft’s effective 

range is slightly larger than the t-ratio of Blue aircraft’s effective range. 
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Figure 23.  Regression Analysis of Engagement Model P(Win) Based on 

NOLH Data Library 

As with the other regressions, this model fits well and the assumptions of 

regression are upheld. The direction and magnitude of the effects, illustrated in the 

Prediction Profiler, make sense. For example, Red engineering factors such as AWACS 

radar range, Red aircraft effective missile range, and Red aircraft stealth percentage all 
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have a positive relationship with P(Win), whereas Blue engineering factors and the 

communication latency of Red aircraft have a negative relationship with P(Win). It is also 

seen that the effect of Red aircraft effective missile range on P(Win) is quadratic. The 

prediction formula for P(Win) is given in Figure 24. 

 
Figure 24.  Prediction Formula for Engagement Model P(Win) Based on 

NOLH Data Library 

b. Linear Regressions on the R5FF Data Library 

The process of discovering metamodels, via stepwise regression, for a, b, and 

P(Win) are repeated, this time using the R5FF data library. The result of the final model 

for a is shown in Figure 25. The high RSquare value (0.982) indicates that our model fits 

well and explains most of the variability in the data. The diagnostic plots also indicate 

that assumptions are being upheld. The most influential driver of Blue’s attrition power 

on Red (a) is the Blue aircraft’s missile effective range. Red aircraft’s missile effective 

range is a close second. 
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Figure 25.  Regression Analysis of (a) Based on R5FF Data Library 

The Prediction Profiler in Figure 25 shows very similar relationships to the ones 

that appear in the NOLH-based regression model. Though an interaction between 

ACStealth and EnRadar-PClass is statistically significant, and we leave it in the model 

for maximal predictive capability, the effect is not deemed to be practically significant. 
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Thus, we choose not to include the interaction plot in the results to conserve space. The 

prediction formula for a is shown in Figure 26. 

 
Figure 26.  Prediction Formula for (a) Based on R5FF Data Library 
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Figure 27.  Regression Analysis of (b) Based on R5FF Data Library 

Next, a regression model is fit for the killing power of Red on Blue (b), and the 

result is shown in Figure 27. The RSquare value (0.982) is, again, high, as in previous 

models. 
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Figure 28.  Prediction Formula for (b) Based on R5FF Data Library 

Interestingly, this regression for b has more statistically significant terms than the 

equivalent model for b based on the NOLH data. Though not all terms are deemed to 

have practical significance, including a set of the interaction terms. As before, though, we 

are choosing to leave all statistically significant terms in the final model. The fact that 

more statistically significant terms were picked up with the R5FF as compared to the 

NOLH may be the result of the corner-sampling aspect of the R5FF, which tests 

parameters at intervals more extreme (thus, larger ranges) than the space-filling NOLH 

design. The diagnostic plots indicate that the assumptions of linear regression are 

satisfied. As seen previously, the effective missile range of both side’s aircraft have the 

strongest effect on the response, b. The prediction formula for b is shown in Figure 28. 

Finally, we fit a model for P(Win) based on R5FF data, and the result is shown in 

Figure 29. Again, the Rsquare value is very high (0.986), and the diagnostic plots look 

reasonable. The most influential factors are shown in Sorted Parameter Estimates. 
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Aircraft missile effective ranges have the largest impact on P(Win), which is reasonable 

and confirms intuition. The prediction formula is given in Figure 30. 

 
Figure 29.  Regression Analysis of Engagement Model P(Win) Based on 

R5FF Data Library 
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Figure 30.  Prediction Formula for Engagement Model P(Win) Based on 

R5FF Data Library 

c. Comparing the NOLH and R5FF Metamodels 

When we compare the NOLH and R5FF metamodels, we conclude that they are 

largely similar in terms of the relative magnitude of the strongest effects, but that there 

are a few differences as well. As one example, the NOLH allowed us to detect the 

quadratic effect of the Red AC-EffRng on b and P(Win). The R5FF, sampling each factor 

at only two corner points, does not allow us to detect the quadratic effect. The R5FF, 

does, however, allow us to pick up a few other statistically significant effects, as the 

range of the parameters is generally larger than it is with the NOLH.   In short, the choice 

of design technique provides different abilities to explore the design space. Time 

permitting, both designs can be added together to achieve both good space-filling and 

corner-sampling.  

The prediction formulas for a and b, will be plugged into the metamodel P(Win) = 

f(a,b) that will be obtained from the result of running a designed experiment on the 

campaign model. This will yield a composite, embedded metamodel which will allow us 

to explore the effects of engineering-level decisions and changes on the outcome of 

campaign.  
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B. CAMPAIGN-LEVEL MODEL PROCESS 

The campaign-level model is coded using Python Notebook, and implements the 

stochastic Lanchester Linear Law model presented in Chapter II. Metrics captured are 

Red Casualties, Blue Casualties, and P(Win). It simulates a 100-vs-100 aircraft campaign 

engagement between Blue and Red, with four discrete time periods. In each of the four 

time periods, 25 Red aircraft engage 25 Blue aircraft. Each side has a breakpoint for each 

time period. If a side experiences enough casualties as to reach their breakpoint, they will 

disengage the other force. The Python code reads in csv files of the NOLH and R5FF 

data libraries, and utilizes the different sampling methods shown in the work flow 

diagram (Figure 9) to perform replications of the model. Since we utilize different 

methods for sampling, there will be different output data files to analyze and compare. 

All the sampling methods and campaign simulations are done within the Python code. At 

the end of each campaign, the number of casualties is summed, and the side with fewer 

casualties is deemed the winner. For each stochastic replication of the campaign, the 

aforementioned campaign metrics are calculated and stored. The Python code is given in 

the Appendix. 

1. Campaign Model Input Calculations and Input Analysis (Block 1F of 
Work Flow Diagram) 

Utilizing the Lanchester linear law equations presented in section II.D.1 of this 

thesis, attrition coefficients for each force, (a) and (b), for each run are calculated using 

formulas that we now re-present below for convenience in equations 4.1 and 4.2. Also 

these equations are utilized for all campaign models of each sampling method. 

 𝑎𝑎 = 𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)∙(𝑜𝑜𝑜𝑜𝑜𝑜 𝑥𝑥 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)∙(𝑜𝑜𝑜𝑜𝑜𝑜 𝑦𝑦 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) (4.1) 

 𝑏𝑏 = 𝑦𝑦 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)∙(𝑜𝑜𝑜𝑜𝑜𝑜 𝑥𝑥 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)∙(𝑜𝑜𝑜𝑜𝑜𝑜 𝑦𝑦 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) (4.2) 

 The work flow diagram contains seven different sampling and DOE methods 

applied to the campaign model. Though we discuss the details of these seven methods in 

the remainder of this chapter, here we show in Figures 31 and Figure 32 the side by side 

boxplots of the a and b values for these seven methods. Since we have not yet presented 
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all of the details about these individual methods, the main take-away at this point is 

simply to notice how different the input ranges are across these seven methods. 

Therefore, we should expect large and practical impacts on the campaign results.  

 
Figure 31.  Comparison of (a) Value Obtained from Different Sampling 

Methods and Experimental Design 

Figure 31 shows the difference among a inputs obtained by employing seven 

different methods. We note that the “Summarized_Linked_Campaign” and the two 

“Taking Means” results have similar medians. We can also see that 

“Random_from_NOLH” and “Raw_Linked_Campaign” have skewed distributions. 



 65 

 
Figure 32.  Comparison of (b) Value Obtained from Different Sampling 

Methods and Experimental Design 

In Figure 32, we show the box plots of b inputs for the seven methods. Except for 

the skewed output from the “Random_from_R5FF” method, we note that the other 

methods produce numerically similar medians. 

2. Campaign Model Runs by Employing Sampling Methods and Output 
Analysis (Blocks 2A, 2B, 2C, and 2D of Work Flow Diagram) 

A function in python, called “lanch” is written, which simulates one of the four 

engagements (time periods) in an air-to-air campaign. This function is therefore called 

four times to simulate an entire air campaign. One engagement consists of 25-vs-25 

aircraft, fighting until one side reaches its breakpoint, which is six remaining aircraft, a 

quarter of the operation’s force size. For every method of running the campaign model, 

according to the work flow diagram, the lanch function is called, the specified number of 

stochastic replications are performed, and the campaign outputs are written to csv files. It 
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takes approximately four seconds to run the campaign model, with the author’s laptop 

having the features listed in section II.E.4. 

a. Using Overall Sample Mean of MANA Outputs (Block 2A of Work Flow 
Diagram) 

First, the campaign model is run for 10,000 replications, using a single point 

estimate for a and a single point estimate for b. The point estimates are generated using 

the overall sample mean (over the MANA library) of Red casualties, Blue casualties, and 

length of the engagement within equations 4.1 and 4.2. 

Since we use point estimation by using the overall mean of the MANA model 

outputs, running the campaign model merely provides us with a single point estimate of 

P(Win), but as well a data library (with 10,000 rows) of Blue and Red casualties. With 

10,000 replications, the standard error associated with P(Win) will be no greater than 

.005. 

We run the campaign model over 10,000 replications two times, once using the 

sample means obtained from the NOLH data library, and once using the sample means 

from the R5FF data library. 

(1) Taking Overall Sample Mean Input from NOLH Data Library 

Running the campaign model with overall sample means from the NOLH data 

library provides the histogram and summary statistics shown in Figure 33. We note again 

that we obtain a single point estimate (value) for P(Win). Our estimate for P(Win) is .341. 

This point estimate would of course change if the model is re-run for another set of 

stochastic replications. Having only one point estimate is not a reasonable and plausible 

outcome for an analyst whose goal is to provide insight to a decision maker which takes 

into account uncertainty in the outcome of the campaign. On the other hand, this 

sampling technique does provide distributions, vice a single point estimate, for Red and 

Blue casualties. Having an entire distribution of data does provide an adequate means to 

understand uncertainty, and thus, risk. As seen in Figure 33, the two output histograms 

(Red casualties and Blue casualties), in this case, are left-skewed. And we also notice that 

Red takes more casualties than Blue, on average. The “spike” that occurs at 76 Red 
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casualties, this is the case where Blue wins every battle. A similar but smaller spike can 

be seen in the Blue casualties histogram. 

 
Figure 33.  Distributions of Campaign Model Output (Taking Overall 

Sample Means from NOLH Data Library) 

(2) Taking Overall Sample Mean Input from R5FF Data Library 

Next, we used the overall sample means of Red and Blue casualties as well as 

length of engagement from the R5FF data library. The resulting histograms and summary 

statistics are shown in Figure 34. As before, instead of a distribution, we obtain a single 

point estimate for P(Win), in this case equal to 0.461. And, we again note that this point 

estimate would be expected to change if the model is re-run. 
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Figure 34.  Distributions of Campaign Model Output (Taking Overall 

Sample Means from R5FF Data Library) 

In Figure 34, we observe distributions that are similar to those generated using the 

NOLH data library. The summary statistics are also similar to those from the NOLH data. 

When we compare histograms and summary statistics of the output from both 

designs, we observe that there are differences, such as differences in the sample means 

for Red and Blue casualties and slight differences in the shapes of the distributions. We 

can attribute these differences to the space-filling vs. corner-sampling aspects of the 

NOLH and R5FF designs, respectively. 

More important than the slight differences between the two design outputs, 

however, is the main point that simply generating a single point estimate for P(Win) is 

insufficient, in terms of being able to properly evaluate uncertainty and risk. 
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b. Random Sampling (Block 2B of Work Flow Diagram) 

In the previous step, we generated single point estimates for a and b, based only 

on sample means from the MANA data. In contrast, in this step, we utilize random 

sampling to provide a range of a and b estimates as input to the campaign model. We will 

do 1,000 different stochastic Lanchester “runs,” where on each run, we will randomly 

select a different pair of a and b values from the MANA output for each of the 4 

engagements in the campaign model. In other words, in total, we will randomly sample 

4,000 rows (pairs of a and b values) from either the NOLH raw output or the R5FF raw 

output. Each run utilizes four of these pairs, one for each engagement time period. 

Likewise, the lanch function is utilized for each 25-vs-25 engagement. The sampling is 

done uniformly, without replacement. Recall that the NOLH raw output has 129,000 

rows that could potentially be selected and the R5FF raw output has 128,000 rows that 

could potentially be selected. For each run, we perform 100 stochastic replications. 

(1) Random sampling from the NOLH Data Library 

Here we select pairs of a and b values from the NOLH raw output data library. 

The resulting histograms and summary statistics, for P(Win), Blue casualties, and Red 

casualties, are shown in Figure 35. 
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Figure 35.  Distributions of Campaign Model Output (Random Sampling 

from MANA NOLH Raw Data Library) 

We can make some interesting observations about the histograms in Figure 35. 

First, most strikingly, P(Win) is bimodal. We note how misleading it would be to 

interpret the point estimate of P(Win)=0.341, generated with the previous method, as 

“likely” or “representative,” when obviously that point estimate is not at all 

representative of the set of possible outcomes that could occur. In other words, the risk of 

making decisions based on a single point estimate is very high. What would be extremely 

valuable to the decision maker, besides understanding the distribution/range of outcomes 

as we do here, is to conduct designed experimentation in order to better understand which 
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factors are driving success/failure. That is what we accomplished via Steps 1A through G 

of our work flow. 

We also note that there are some small gaps in the histograms, which may be an 

artifact of the random manner in which the a and b values were sampled. 

(2) Random sampling from the R5FF Data Library 

The same random sampling process is next performed on the R5FF data library, in 

order to provide input to the campaign model. The result is shown in Figure 36. It can be 

seen that, again, there are gaps between bars in the casualty histograms. An interesting 

difference, as compared to the NOLH random sampling, is that the average P(Win) is 

substantially higher than it was with the R5FF data. This is an interesting outcome that 

shows how the choice of design can affect the results obtained. We once again advocate 

appending an R5FF design to an NOLH design, if time permits. We should also keep in 

mind that in this method we have only sampled a small portion of each of the raw data 

output libraries, that is, 4,000 samples taken from 129,000 rows for the NOLH and 

128,000 rows for the R5FF. 
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Figure 36.  Distributions of Campaign Model Output (Random Sampling 

from MANA NOLH Data Library) 

Similar interesting observations are observed in the histograms in Figure 36. As in 

previous random output, P(Win) has bimodal distribution. Here we again can say that 

applying point estimation to random MANA data output will be underestimating the 

uncertainty and risk. Understanding the distribution of outcomes is important, however, 

transferring the features of the distributions to higher level model is more important. The 

gaps in the histograms can be seen in Figure 36. 
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c. Linking Engagement and Campaign Models Directly (Linked 
Metamodeling; Block 2C of Work Flow Diagram) 

 We now describe Block 2C of the Work Flow Diagram, where we simulate the 

“direct linking” of the MANA engagement level output to the campaign model. We will 

demonstrate this method using the NOLH data, in order to take advantage of the space-

filling feature of the design. Linking will work as follows: over the entire NOLH design 

space, run the Stochastic Lanchester model for every pair of a and b estimates (calculated 

from the MANA data), performing 30 random replicates for each pair. The lanch function 

is utilized for each period of campaign. This is in contrast to the previously described 

random sampling method, in that we will not sample a small portion of the NOLH space, 

but the entire space. We will perform this method using both the raw (full) data output 

library as well as the summarized data library. This method is analogous to running the 

campaign model with the ability to “call out to MANA” for a set of replications in the 

engagement model for some specific setting of design factors. This method would in 

actuality require software to link the two models and allow for “on demand” requests for 

MANA runs. Instead, what we have done here for simplicity is pre-generate the library of 

MANA data across the entire design space of interest. 

(1) Linking Raw (Full) NOLH Data Library to Campaign Model 

For each of the 129,000 calculated a and b values which are obtained from the 

engagement model raw NOLH data library, we performed 30 replications of the 

stochastic Lanchester model. Same a and b values are used for all periods of the 

campaign model. As a result, we obtain 129,000 rows of output, which include the means 

of our campaign metrics over the 30 replications.  



 74 

 
Figure 37.  Distributions of  Campaign Model Output (Linking Raw (Full) 

NOLH Data Library) 

In Figure 37, the P(Win) histogram shows how the probability of win “piles up” 

on only two outcomes, 0 and 0.6. At first, this seems like an unrealistic outcome. 

However, when we analyze the data we understood that this feature of the P(Win) 

histogram is the artifact of MANA model choice. Since we decided two have a 2-versus-

2 engagement, there are only two outcomes of this engagement for each side. One side 

can reach its goal (returning to base) if the other side’s fighters are shot down. In other 

words, one side wins either by not losing any fighters or losing one fighter when the other 

side loses both of its fighters. Therefore, the number of casualties can be only 1 or 2 for 
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each side. As mentioned before, we calculate the attrition coefficients for the campaign 

model, a and b, using this number of casualties. Having a lack of variability in the 

casualty numbers impacts the calculation of the attrition coefficient values. As a result, 

one side has superiority and therefore every time wins or loses campaign, which is why 

there are only two bars in the P(Win) histogram. Summary statistics are not sufficient in 

this case since the mean is not representative of the distribution of outcomes, and the 

result is very different from the output of other sampling techniques.  

So, even though this method utilizes the entire data library, it does not provide 

output to reasonably assess risk and uncertainty. We note that in order to increase 

variability in P(Win) and number of casualties, the number of fighters in the engagement 

model could be increased beyond two per side, so that there would potentially be more 

combinations of Blue and Red casualties observed in the data. 

(2) Linking Summarized NOLH Data Library to Campaign Model 

Secondly, we run the stochastic Lanchester model 30 times for each of the 129 a 

and b estimates which are obtained from the summarized (by means) NOLH data library. 

Likewise, same a and b values are utilized for all periods of the campaign model. As a 

result, we obtain 129 outputs which include the means of our campaign metrics over the 

30 replications. The results are shown in Figure 38. 
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Figure 38.  Distributions of  Campaign Model Output (Linking 

Summarized NOLH Data Library) 

The distribution histogram of P(Win) in Figure 38 now illustrates much more 

variability in the campaign outcome than in the previous step, which of course provides 

us a better assessment of uncertainty. The average value of P(Win) is 0.364, so Red has 

low probability of winning. Also, the spike on zero in the P(Win) histogram shows that 

Red has no chance of winning for a substantial number of runs (i.e., design points). In the 

summary statistics for P(Win), it is seen that the standard deviation of P(Win) is 0.364 

which is very close to the mean, 0.364. This can be interpreted that there is large 

variability in P(Win) compared to the mean. Additionally, the mean of Red casualties 
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(67.068) is greater than the mean of Blue casualties (60.415), however, Red casualties 

has a bit lower standard deviation (8.386) than Blue casualties (10.373). Histograms of 

casualties for both sides are left-skewed. The spike on the 70–76 interval in the casualty 

histograms shows that one side loses most of its aircrafts in the campaign, which is an 

expected outcome when a Lanchester linear law is applied with break points. The 

variability in casualty histograms represents the risk in the campaign. 

d. Constructing a Composite (Embedded) Metamodel for P(Win) (Blocks 
2D.1, 2D.2, and 2D.3 of Work Flow Diagram) 

(1) Performing a DOE, varying a and b 

In this step, we conduct an experiment to vary two inputs to the campaign model, 

a and b. Note that we choose to fix the number of aircraft on each side. We use the ranges 

of a and b from the R5FF raw data library to generate the ranges over which a and b will 

be varied in the experiment. The range of a or b is simply its maximum value minus its 

minimum value. The reason we use the R5FF raw data, instead of the NOLH raw data, is 

that the R5FF tests the corner points while the NOLH tests the interior of the design 

space. We wanted to have the maximum possible (while remaining realistic for our 

model) ranges for a and b, therefore, we determined the use of the R5FF data to be more 

appropriate since it tests at more extreme points than the NOLH. 
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Figure 39.  Multivariate Analysis of a and b Design Values 

We chose to cover the ranges of our two factors with 11 points (levels) each, and 

generated a 121 DP full factorial design. A full factorial design tests all possible 

combinations, so this one contains 11×11=121 design points. Figure 39 shows the 

correlations and scatterplot matrix of the design. Since this is a full factorial design, we 

achieve perfectly even coverage over the space, and there is zero correlation between the 

two factors. Each DP is replicated 100 times. The output distributions of these runs are 

presented in Figure 40. 
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Figure 40.  Distributions of  Campaign Model Output (DOE on (a) and (b) 
Data Library) 

We note that the P(Win) histogram in Figure 40 is similar to the P(Win) 

distribution of linking summarized NOLH data library, given in Figure 38. In the side-by-

side boxplots we will present in section B.4 of this chapter, we’ll continue the 

comparison of P(Win) and casualties to the other methods. The main goal of this method, 

though, is to obtain a metamodel for P(Win) as a function of a and b, which we 

accomplish in the next section.  
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(2) Fitting a Metamodel for P(Win) as a Function of a and b 

With the output from the experiment, we fit a logistic regression model for 

P(Win) as a function of a and b. 

 
Figure 41.  Logistic Regression Analysis of P(Win) = f(a,b) 
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We choose logistic, vice linear, regression because of the fact that our response 

P(Win) is constrained to the interval [0,1]. In Figure 41, the p-value for the Whole Model 

Test is less than our chosen level of significance (0.05), which indicates that the model is 

statistically significant as a whole. The Prediction Profiler shows the marginal s-shaped 

curves that result from logistic regression. The Surface Profiler allows us to visualize 

how the attrition coefficients together affect P(Win). As a increases, P(Win) decreases; 

and as b increases, P(Win) decreases. The prediction formula for P(Win) is shown in 

Figure 42. 

 
Figure 42.  P(Win) Prediction Formula 

 

(3) Construct a Composite (Embedded) Metamodel for P(Win) (Block 2D.3 
of Work Flow Diagram) 

We now analytically construct a formula for P(Win) = f(Blue and Red experiment 

variables) by plugging in the previously obtained stepwise regression models for a and b 

into our logistic regression of P(Win). As a result, we obtain a composite, embedded 

metamodel; and its formula is shown in Figure 43. 
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Figure 43.  Embedded P(Win) Metamodel as a Function of Red and Blue 

Parameters 

As a result, we obtain the ability to calculate an estimate for P(Win) for any 

combination of the engineering factors in the original MANA experiments, though it is 

important to note that this constructed embedded metamodel is now deterministic. Plug in 

a set of values for the engineering factors, and a single point estimate for P(Win) is 

obtained. We will next compare the performance of this metamodel to the linked version 

of the metamodel.  
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3. Comparing the Directly-Linked Metamodel to the Embedded 
Metamodel (Block 3 of Work Flow Diagram) 

Here the main goal is to compare the result of the Linked Metamodel to the result 

of the Embedded Metamodel. Additionally, we compare these two to the P(Win) estimate 

obtained from the MANA engagement level model. Using the NOLH summary data, we 

will compare these three methods for estimating P(Win). 

The “P(Win) Campaign Model (Embedded Meta-Model)” results are obtained by 

substituting each of the 129 Red and Blue experiment factor settings into the composite 

embedded metamodel shown in Figure 43. The correlation and scatterplot matrices 

appear in Figure 44. The “P(Win) Campaign Model (Linked Meta-Model)” results are 

obtained as described in section B.2.c. 

 
Figure 44.  Comparison of Model Outputs (Correlation Matrix and Scatter 

Plot Matrix) 

We see from Figure 44 that all pairwise correlations amongst the three are close to 

1.0, which means they are nearly linearly related. Additionally, they are all positive, 

which is a good sign. However, we also observe how bimodal the two campaign model 
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results are. Since this comparison is made on the summary (means) NOLH data, we next 

conduct a comparison based on the full dataset. 

For ease of visualization, we conduct the next comparison of the Embedded 

Metamodel result to the Linked result by means of a small one-factor experiment. In this 

experiment we will vary one of the most influential factors from our original 10-factor 

experiment, the effective range of the Red aircraft missile (AC-EffRng). The other factors 

are not varied and holding them at their baseline levels. We vary AC-EffRng from 

50,000m to 80,000m, in 500m increments. Each of our resulting 61 design points is 

replicated 1,000 times. We first perform the MANA runs for this small experiment, to 

generate the 61,000 row MANA library of output. As before, to the MANA results we 

add columns for our calculations of the a and b estimates. We then run the stochastic 

Lanchester model for each of these 61,000 pairs of a and b values, replicating 100 times 

for each pair. As a result of the 61,000 × 100 Lanchester campaign model runs, we obtain  

“P(Win) Campaign Model (Linked MetaModel).”   

Next, we obtain “P(Win) Campaign Model (Embedded MetaModel)” by simply 

evaluating the deterministic composite embedded formula for P(Win) over the range of 

AC-EffRng values, holding the other variables in the formula at their baseline levels. 

In Figure 45, we compare the P(Win) Campaign Model (Embedded MetaModel) 

results in blue to the P(Win) Campaign Model (Linked MetaModel) results in red. The 

red dots represent the mean for each DP and the red error bars correspond to the standard 

deviation of the data. Because the error bar represents the standard deviation and not the 

confidence interval for the mean, the outermost edges of the bars fall below zero and 

above one. The blue dots and connecting line represent the output of the embedded 

metamodel. There is only one dot for each design point, because the model is 

deterministic. The difference in the two sets of results is evident. Clearly the use of the 

deterministic embedded metamodel is inadequate to assess risk.   
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Figure 45.  Comparison of Embedded to Linked Metamodel Results, Based 

on a One-Factor Experiment 

Additionally, we note that after about design point-10 (DP-10), the P(Win) 

estimate obtained from embedded metamodel becomes larger than the P(Win) estimate 

from the linked metamodel. The use of the embedded metamodel would therefore cause 

an underestimation of risk for most cases. 

4. Compare Campaign MOEs Based on the Sampling Methods (Block 4 
of Work Flow Diagram) 

We now compare the outputs of the campaign-level model sampling methods 

using JMP’s graphic builder platform. The seven methods we have used in this research 

are referred to by the following names: 

1. Taking Means_NOLH 
2. Taking Means_R5FF 
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3. Random_from_NOLH 
4. Random_from_R5FF 
5. DOE_Campaign 
6. Raw_Linked_Campaign 
7. Raw_Summarized_Campaign 

In Figure 46, we compare the estimate for P(Win) by method and in Figure 48, we 

compare the estimate for average casualties by method. Each of these figures contains 

side by side boxplots, with the data points overlaid. We can clearly see a large and 

practical impact of the sampling method chosen. 

 
Figure 46.  Comparison of Campaign P(Win) Obtained from Different 

Sampling Methods and Experimental Design 

In Figure 46, it can be seen that the campaign-model P(Win) estimate’s median 

and distribution differs across the sampling methods. “DOE_Campaign” and 

“Summarized_Linked_Campaign” have distributions that are not too dissimilar, but 
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Summarized_Linked_Campaign has the most even spread of points (few “gaps”). 

Interestingly, the “Random_from_R5FF” method resulted in output that is symmetric. 

The Random_from_NOLH and Random_from_R5FF approaches produced tri-modal 

data, and as we observed, previously, the data from Raw_Linked_Campaign is bimodal. 

Additionally, it is obvious that the point estimates obtained by the “Taking_Means” 

approaches would underestimate the variability, and thus risk, in the P(Win) campaign 

MOE.   

 

 
Figure 47.  Comparison of Campaign Average Number of Casualties 

Obtained from Different Sampling Methods and Experimental 
Design 

Figure 47 contains the boxplots overlaid with points for the average number of 

casualties by sampling method. In general, we expect the casualty boxplots to have 

skewed distributions, however, we observe close to symmetric data in the 

Random_from_NOLH and Random_from_R5FF cases. This may be an artifact of 
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sampling method. On the other hand, the Summarized_Linked_campaign data is 

somewhat skewed but still exhibits fairly even spread over its range, in terms of the lack 

of gaps. Raw_Linked_Campaign data is tri-modal, and the DOE_campaign is also 

somewhat skewed, but doesn’t contain large gaps in its range. The Random_from_NOLH 

and Random_from_R5FF data exhibits gaps across their ranges, due to the nature of the 

sampling. Of course, the main takeaway from Figures 46 and 47 is that the campaign 

estimate varies substantially by sampling method. 
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V. DISCUSSION AND CONCLUSION 

In this study, we constructed two models, one engagement-level and one 

campaign-level, in order to construct a simple hierarchical modeling process. Using these 

models, and exploring the link between the two, we explored how the variance (error) 

propagates through hierarchal air combat models. As mentioned in Chapter I, this thesis 

has sought to extend similar research conducted by LT Russell Pav in 2015. One of Pav’s 

conclusions was that random sampling may not mitigate bias neither in the mean nor 

variance of campaign output (Pav, 2015). Beyond conducting random sampling on a 

different scenario than the one Pav used, this study employed additional techniques to 

sample from or link to the lower level engagement model. In particular, we explored and 

compared the embedded metamodeling and linked metamodeling approaches, and 

established a key difference between the two; namely that the deterministic embedded 

metamodeling technique can lead to biased results and underestimation of risk. 

A. ASSESSING UNCERTAINTY AND RISK 

There is always uncertainty in the output of stochastic models; that is the nature of 

modeling with random elements. A useful endeavor, then, is to utilize design of 

experiments to discover robust configurations of controllable decision variables, given 

uncertainty in uncontrollable variables such as the environment and enemy composition 

and tactics. Potentially exacerbating the uncertainty in hierarchical stochastic models 

would be to inappropriately sample from a lower-level model’s outputs to feed as input to 

the higher-level model. Therefore, a goal of this study was to explore methods to 

accomplish this. We generated a MANA engagement model to provide input to a 

stochastic Lanchester campaign model, and performed designed experiments on the 

MANA model. We then analyzed engagement model outputs to analyze their 

distributions and fit metamodels for the MOEs as functions of the experiment variables. 

We then compared inputs for the campaign model obtained by a variety of sampling 

methods, including executing a designed experiment on the campaign model. Figure 31 

and Figure 32 illustrated how the attrition coefficient distributions differed according to 
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method. This is the first level of assessment of uncertainty in hierarchical modelling—

examining the distributions of inputs. 

After running the campaign model with different input libraries, we conducted the 

second level of assessment of uncertainty in hierarchical modelling. Figures 46 and 47 

contain the side by side box plots that show how the campaign model output can differ 

substantially according to the sampling method that is used. Utilizing one of the methods 

which is not sufficient to propagate variance from the engagement model output to the 

campaign model may lead the analyst to an incorrect assessment that may underestimate 

risk, potentially costing money and losing lives. 

Using point estimation by taking the sample mean is the easiest and simplest way 

among these sampling methods, and is commonly used; however, Figures 46 and 47 

show that taking means does not provide the ability to evaluate variability and risk. 

Random sampling techniques provide a distribution of results, but we should keep in 

mind that not all random sampling methods fully characterize the underlying uncertainty, 

and the result may change on repeated runs. 

We also discuss two techniques which we call the deterministic embedded 

metamodel approach and the linked metamodel approach. As Figure 45 demonstrates, the 

linked metamodel is capable of characterizing the underlying uncertainty, while the 

deterministic embedded metamodel does not. Also, as we discussed, an excellent method 

for systematically exploring uncertainties in the scenario is design of experiments (DOE), 

and the result of the DOE can adequately characterize variability and risk. We chose to 

illustrate the use of DOE by using both the Nearly Orthogonal Latin Hypercube (NOLH) 

and the Resolution 5 Fractional Factorial. Figure 45 shows that the metamodel linked to 

DOE output is much more effective and useful for quantifying risk than the embedded 

metamodel, since it captures the variability that results when one of the engineering 

factors is varied over a range. Additionally, we recommended that if time permits, it 

would be desirable to supplement the desirable features of the space-filling NOLH with 

the corner-sampling R5FF. 
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B. AREAS FOR FUTURE RESEARCH 

We generated a two vs. two air-to-air engagement model since no fighter aircraft 

flies alone. While analyzing the result of linking the raw (full) NOLH data library to the 

campaign model, we observed that the two vs. two engagement’s outcome can be either 

one side wins with no casualties or one casualty. In other words, the two vs. two 

engagement  provides less variability in model output than there would be in a several vs. 

several engagement, since there are only two outcomes for each side. As a result of that, 

campaign outputs obtained from the runs on raw (full) NOLH data library exhibited very 

low variability. Therefore, to achieve more variability in engagement model output, the 

number of fighters could be increased (three vs. three or four vs. four). This would 

increase the variability in the engagement level model output; and linking the raw data 

library to the campaign model can then be more plausible and serve as an effective way 

to propagate variance forward into the campaign model. 

This study employed MANA for the engagement model and the Lanchester linear 

law for the campaign model. Even though MANA allows the user to model many 

engineering factors of military assets and battle conditions, the program comes with some 

significant limitations and assumptions. Additionally, we do not use models that are 

accredited by any official organization. There certainly exist accredited higher resolution 

simulation programs for modeling air missions. Thus, using more detailed and realistic 

modeling tools such as BRAWLER and STORM for studies related hierarchical combat 

modeling may provide better insights. 
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APPENDIX 

Here, we provide the code for the stochastic Lanchester linear campaign models 

within a Python Notebook page. First, necessary programming packages are installed, 

then the model takes in csv files of both NOLH and R5FF data libraries that are obtained 

from MANA model runs. We built a function called “lanch” which simulates one time 

period of an air campaign. Then, we employed different sampling methods to sample 

from both data libraries to provide input to the campaign model. A campaign model code 

for each sampling technique was written and “lanch” function was utilized within these 

campaign codes to simulate 100 vs. 100 campaigns between Red and Blue. The number 

of replications for campaign models are arbitrarily selected to have enough runs to 

provide mean statistics for each campaign MOES. After each model run, summary 

statistics are recorded as a data frame and written to a csv file. Since Python Notebook is 

employed, screen shots or code and statistics are presented below in Figures.  

 
Figure 48.  Screen Shot of Campaign Model Code within Python 

Notebook-1 
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Figure 49.  Screen Shot of Campaign Model Code within Python 

Notebook-2 

 
Figure 50.  Screen Shot of Campaign Model Code within Python 

Notebook-3 
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Figure 51.  Screen Shot of Campaign Model Code within Python 

Notebook-4 

 
Figure 52.  Screen Shot of Campaign Model Code within Python 

Notebook-5 
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Figure 53.  Screen Shot of Campaign Model Code within Python 

Notebook-6 

 
Figure 54.  Screen Shot of Campaign Model Code within Python 

Notebook-7 

 
Figure 55.  Screen Shot of Campaign Model Code within Python 

Notebook-8 
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Figure 56.  Screen Shot of Campaign Model Code within Python 

Notebook-9 

 
Figure 57.  Screen Shot of Campaign Model Code within Python 

Notebook-10 
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Figure 58.  Screen Shot of Campaign Model Code within Python 

Notebook-11 

 
Figure 59.  Screen Shot of Campaign Model Code within Python 

Notebook-12 
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Figure 60.  Screen Shot of Campaign Model Code within Python 

Notebook-13 

 
Figure 61.  Screen Shot of Campaign Model Code within Python 

Notebook-14 
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Figure 62.  Screen Shot of Campaign Model Code within Python 
Notebook-15 

 
Figure 63.  Screen Shot of Campaign Model Code within Python 

Notebook-16 

 
Figure 64.  Screen Shot of Campaign Model Code within Python 

Notebook-17 
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